Implemented naive soft decision decoder

This commit is contained in:
Andreas Tsouchlos 2022-11-07 10:58:35 +01:00
parent 04eaea92a1
commit 78fd8bf95c
4 changed files with 62 additions and 5 deletions

View File

@ -0,0 +1,54 @@
import numpy
import numpy as np
import itertools
class SoftDecisionDecoder:
"""This class naively implements a soft decision decoder. This decoder calculates
the posterior probability for each codeword and then chooses the one with the largest
probability.
"""
def __init__(self, G: np.array, H: np.array):
"""Construct a new SotDecisionDecoder object.
:param G: Generator matrix
:param H: Parity check matrix
"""
self._G = G
self._H = H
self._datawords, self._codewords = self._gen_codewords()
self._codewords_bpsk = self._codewords * 2 - 1 # The codewords, but mapped to [-1, 1]^n
def _gen_codewords(self) -> np.array:
"""Generate a list of all possible codewords.
:return: Numpy array of the form [[codeword_1], [codeword_2], ...]
"""
k, n = self._G.shape
# Generate a list of all possible data words
u_lst = [list(i) for i in itertools.product([0, 1], repeat=k)]
u_lst = np.array(u_lst)
# Map each data word onto a codeword
c_lst = np.dot(u_lst, self._G) % 2
return u_lst, c_lst
def decode(self, y: np.array) -> np.array:
"""Decode a received signal.
This function assumes a BPSK-like modulated signal ([-1, 1]^n instead of [0, 1]^n)
and an AWGN channel.
:param y: Vector of received values. (y = x + n, where 'x' is element of [-1, 1]^m
and 'n' is noise)
:return: Most probably sent symbol
"""
# TODO: Is there a nice numpy way to implement this for loop?
correlations = []
for c in self._codewords_bpsk:
correlations.append(np.dot(y, c))
return self._datawords[numpy.argmax(correlations)]

View File

@ -1,5 +1,4 @@
import numpy as np
from tqdm import tqdm
class ProximalDecoder:

View File

@ -44,6 +44,7 @@ def count_bit_errors(d: np.array, d_hat: np.array) -> int:
def test_decoder(decoder: typing.Any,
d: np.array,
c: np.array,
SNRs: typing.Sequence[float] = np.linspace(1, 4, 7),
target_bit_errors=100,
@ -54,6 +55,7 @@ def test_decoder(decoder: typing.Any,
This function prints its progress to stdout.
:param decoder: Instance of the decoder to be tested
:param d: Dataword (element of [0, 1]^n)
:param c: Codeword whose transmission is to be simulated (element of [0, 1]^n)
:param SNRs: List of SNRs for which the BER should be calculated
:param target_bit_errors: Number of bit errors after which to stop the simulation
@ -79,7 +81,7 @@ def test_decoder(decoder: typing.Any,
y = add_awgn(x, SNR, signal_amp=np.sqrt(2))
y_hat = decoder.decode(y)
total_bit_errors += count_bit_errors(c, y_hat)
total_bit_errors += count_bit_errors(d, y_hat)
total_bits += c.size
if total_bit_errors >= target_bit_errors:

View File

@ -4,6 +4,7 @@ import seaborn as sns
import pandas as pd
from decoders import proximal
from decoders import naive_soft_decision
from decoders import utility
@ -21,13 +22,14 @@ def main():
# Test decoder
d = np.array([0, 1, 1, 1])
d = np.array([0, 0, 0, 0])
c = np.dot(G.transpose(), d) % 2
print(f"Simulating with c = {c}")
decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
SNRs, BERs = utility.test_decoder(decoder, c, SNRs=np.linspace(1, 5.5, 7), target_bit_errors=200, N_max=15000)
# decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
decoder = naive_soft_decision.SoftDecisionDecoder(G, H)
SNRs, BERs = utility.test_decoder(decoder, d, c, SNRs=np.linspace(1, 7, 9), target_bit_errors=500, N_max=10000)
data = pd.DataFrame({"SNR": SNRs, "BER": BERs})