Moved all code names from footnotes to item
This commit is contained in:
parent
b367115824
commit
700401fac3
@ -38,7 +38,7 @@
|
||||
doi=false,url=false,isbn=false]{biblatex}
|
||||
\addbibresource{presentation.bib}
|
||||
|
||||
|
||||
\input{common.tex}
|
||||
|
||||
\pgfplotsset{
|
||||
/pgfplots/colormap/mako/.style={
|
||||
|
||||
@ -11,6 +11,10 @@
|
||||
\begin{frame}[t]
|
||||
\frametitle{Comparison: Convergence Behavior}
|
||||
|
||||
\begin{itemize}
|
||||
\item (3,6) regular LDPC code with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc}
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
@ -53,9 +57,6 @@
|
||||
\addlegendentry{$E_b / N_0 = \SI{8}{dB}$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Average error for $\SI{500000}{}$ decodings,
|
||||
$\omega = 0.05, \gamma = 0.05, K=200$\footnotemark}
|
||||
\end{subfigure}%
|
||||
\begin{subfigure}[t]{0.5\textwidth}
|
||||
\centering
|
||||
@ -98,24 +99,24 @@
|
||||
\addlegendentry{$E_b / N_0 = \SI{4}{dB}$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Average error for $\SI{100000}{}$ decodings\protect\footnotemark{}}
|
||||
\end{subfigure}%
|
||||
|
||||
\end{figure}
|
||||
|
||||
|
||||
\footnotetext{Simulation performed with (3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[Code: 204.33.484]{mackay_enc}}
|
||||
\begin{itemize}
|
||||
\item Minimum number of iterations independant of SNR
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{frame}[t]
|
||||
\frametitle{Comparison: Time Complexity}
|
||||
|
||||
\vspace*{-5mm}
|
||||
|
||||
\begin{itemize}
|
||||
\item Both algorithms are $\mathcal{O}\left( n \right)$ on average
|
||||
\item LP decoding implementation significantly faster
|
||||
\item The points shown are from the following codes: BCH $\left( 31, 11 \right)$;
|
||||
BCH $\left( 31, 26 \right)$; \\
|
||||
\cite[\text{96.3.965; 204.33.484; 204.55.187; 408.33.844; PEGReg252x504}]{mackay_enc}
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
@ -148,16 +149,13 @@
|
||||
\end{tikzpicture}
|
||||
\end{figure}
|
||||
|
||||
\footnote{The points shown were calculated by evaluating the metadata
|
||||
of BER simulation results for the following codes:
|
||||
BCH $\left( 31, 11 \right)$;
|
||||
BCH $\left( 31, 26 \right)$;
|
||||
\cite[\text{96.3.965; 204.33.484;
|
||||
204.55.187; 408.33.844; PEGReg252x504}]{mackay_enc}
|
||||
}
|
||||
|
||||
\begin{itemize}
|
||||
\item Both algorithms are $\mathcal{O}\left( n \right)$ on average
|
||||
\item LP decoding implementation significantly faster
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{frame}[t]
|
||||
\frametitle{Proximal Decoding: Improvement using \\``ML-in-the-List''}
|
||||
@ -165,11 +163,7 @@
|
||||
\vspace{-0.5cm}
|
||||
|
||||
\begin{itemize}
|
||||
\item Comparison of proximal \& improved (correction of $N = \SI{12}{\bit}$)
|
||||
decoding simulation%
|
||||
\footnote{(3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[Code: 204.33.484]{mackay_enc}}
|
||||
results
|
||||
\item (3,6) regular LDPC code with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc}
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
@ -253,15 +247,12 @@
|
||||
\addlegendentry{ML}
|
||||
|
||||
\addlegendimage{RedOrange, mark=triangle, densely dashed, line width=1pt}
|
||||
\addlegendentry{Improved}
|
||||
\addlegendentry{Improved ($N$=12)}
|
||||
|
||||
\addlegendimage{RoyalPurple, mark=*, line width=1pt}
|
||||
\addlegendentry{BP}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Simulation results for $\gamma = 0.05, \omega = 0.05, K=200, N=12$}
|
||||
\label{fig:simulation_results_hybrid}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
|
||||
@ -825,6 +825,13 @@
|
||||
\begin{frame}[t]
|
||||
\frametitle{LP Decoding using ADMM}
|
||||
|
||||
\begin{itemize}
|
||||
\item ``Margulis'' LDPC code with $n = 2640$, $k = 1320$
|
||||
\cite[\text{Margulis2640.1320.3}]{mackay_enc}
|
||||
% ; $K=200, \mu = 3.3, \rho=1.9,
|
||||
% \epsilon_{\text{pri}} = 10^{-5}, \epsilon_{\text{dual}} = 10^{-5}$
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
@ -850,23 +857,24 @@
|
||||
\addlegendentry{BP (Barman et al.)}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{figure}
|
||||
|
||||
\caption{Comparison of datapoints from Barman et al. with own simulation results%
|
||||
\protect\footnotemark{}}
|
||||
\label{fig:admm:results}
|
||||
\end{figure}%
|
||||
%
|
||||
\footnotetext{``Margulis'' LDPC code with $n = 2640$, $k = 1320$
|
||||
\cite[\text{Margulis2640.1320.3}]{mackay_enc}; $K=200, \mu = 3.3, \rho=1.9,
|
||||
\epsilon_{\text{pri}} = 10^{-5}, \epsilon_{\text{dual}} = 10^{-5}$
|
||||
}%
|
||||
%
|
||||
\begin{itemize}
|
||||
\item Comparison of simulation with results from Barman et al. \cite{original_admm}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]
|
||||
\frametitle{LP Decoding using ADMM}
|
||||
|
||||
\begin{itemize}
|
||||
\item ``Margulis'' LDPC code with $n = 2640$, $k = 1320$
|
||||
\cite[\text{Margulis2640.1320.3}]{mackay_enc}
|
||||
% ; $K=200, \mu = 3.3, \rho=1.9,
|
||||
% \epsilon_{\text{pri}} = 10^{-5}, \epsilon_{\text{dual}} = 10^{-5}$
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
@ -896,18 +904,11 @@
|
||||
\addlegendentry{BP (Barman et al.)}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Comparison of datapoints from Barman et al. with own simulation results%
|
||||
\protect\footnotemark{}}
|
||||
\label{fig:admm:results}
|
||||
\end{figure}%
|
||||
%
|
||||
\footnotetext{``Margulis'' LDPC code with $n = 2640$, $k = 1320$
|
||||
\cite[\text{Margulis2640.1320.3}]{mackay_enc}; $K=200, \mu = 3.3, \rho=1.9,
|
||||
\epsilon_{\text{pri}} = 10^{-5}, \epsilon_{\text{dual}} = 10^{-5}$
|
||||
}%
|
||||
%
|
||||
|
||||
\begin{itemize}
|
||||
\item Comparison of simulation with results from Barman et al. \cite{original_admm}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
@ -915,6 +916,10 @@
|
||||
\frametitle{LP Decoding using ADMM: Choice of Penalty\\
|
||||
Parameters}
|
||||
|
||||
\begin{itemize}
|
||||
\item (3,6) regular LDPC code with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc}
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
@ -990,13 +995,11 @@
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{subfigure}
|
||||
|
||||
\caption{Relation between $\mu$ and $\rho$ and decoding performance%
|
||||
\protect\footnotemark{}}
|
||||
\end{figure}%
|
||||
|
||||
\footnotetext{Simulation performed with (3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[Code: 204.33.484]{mackay_enc}}
|
||||
\begin{itemize}
|
||||
\item Similar to $\gamma$ with proximal decoding: no clear optimum
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
@ -1005,6 +1008,10 @@
|
||||
\frametitle{LP Decoding using ADMM: Choice of Penalty\\
|
||||
Parameters}
|
||||
|
||||
\begin{itemize}
|
||||
\item (3,6) regular LDPC code with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc}
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
@ -1078,12 +1085,10 @@
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{subfigure}
|
||||
|
||||
\caption{Relation between $\mu$ and $\rho$ and speed of convergence%
|
||||
\protect\footnotemark{}}
|
||||
\end{figure}%
|
||||
|
||||
\footnotetext{Simulation performed with (3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[Code: 204.33.484]{mackay_enc}}
|
||||
\begin{itemize}
|
||||
\item For lower decoding time, choose low $\mu$ and high $\rho$
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
@ -129,12 +129,9 @@ return $\boldsymbol{\hat{c}}$
|
||||
|
||||
\begin{frame}[t]
|
||||
\frametitle{Proximal Decoding: Bit Error Rate and Performance}
|
||||
\vspace*{-0.5cm}
|
||||
|
||||
\begin{itemize}
|
||||
\item Comparison of simulation%
|
||||
\footnote{(3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[\text{204.33.484}]{mackay_enc}}
|
||||
with results of Wadayama et al. \cite{proximal_paper}
|
||||
\item (3,6) regular LDPC code with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc}
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
@ -190,11 +187,12 @@ return $\boldsymbol{\hat{c}}$
|
||||
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Simulation results for $\omega = 0.05, K=100$}
|
||||
\label{fig:sim_results_prox}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item Comparison of simulation with results of Wadayama et al. \cite{proximal_paper}
|
||||
\end{itemize}
|
||||
|
||||
% \vspace*{-0.5cm}
|
||||
% \begin{itemize}
|
||||
% \item $\mathcal{O}\left(n \right) $ time complexity - same as BP;
|
||||
@ -211,10 +209,7 @@ return $\boldsymbol{\hat{c}}$
|
||||
\frametitle{Proximal Decoding: Choice of $\gamma$}
|
||||
|
||||
\begin{itemize}
|
||||
\item Simulation%
|
||||
\footnote{(3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[\text{204.33.484}]{mackay_enc}}
|
||||
results for different values of $\gamma$
|
||||
\item (3,6) regular LDPC code with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc}
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
@ -282,15 +277,11 @@ return $\boldsymbol{\hat{c}}$
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{subfigure}
|
||||
|
||||
\caption{BER for $\omega = 0.05, K=100$}
|
||||
\label{fig:ber_3d}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item Not great benefit in finding the optimal value for $\gamma$
|
||||
\end{itemize}
|
||||
\vspace{3mm}
|
||||
\end{frame}
|
||||
|
||||
|
||||
@ -514,12 +505,12 @@ return $\boldsymbol{\hat{c}}$
|
||||
\frametitle{Proximal Decoding: Frame Error Rate}
|
||||
|
||||
\begin{itemize}
|
||||
\item Analysis of simulated%
|
||||
\footnote{(3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[\text{204.33.484}]{mackay_enc}}
|
||||
BER and FER
|
||||
\item (3,6) regular LDPC code with $n=204$,\\
|
||||
$k=102$ \cite[\text{204.33.484}]{mackay_enc}
|
||||
\end{itemize}
|
||||
|
||||
\vspace*{-5mm}
|
||||
|
||||
\begin{minipage}{.4\textwidth}
|
||||
\centering
|
||||
|
||||
@ -538,10 +529,6 @@ for $K$ iterations do
|
||||
end for
|
||||
return $\boldsymbol{\hat{c}}$
|
||||
\end{algorithm}
|
||||
|
||||
\vspace*{-5mm}
|
||||
|
||||
\caption{Proximal decoding algorithm \cite{proximal_paper}}
|
||||
\end{figure}
|
||||
\end{minipage}%
|
||||
\begin{minipage}{.6\textwidth}
|
||||
@ -622,9 +609,6 @@ return $\boldsymbol{\hat{c}}$
|
||||
\addlegendentry{$\gamma = 0.05$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Simulation results for $\omega = 0.05, K=100$}
|
||||
\label{fig:simulation_results_ber_fer_dfr}
|
||||
\end{figure}
|
||||
\end{minipage}
|
||||
\end{frame}
|
||||
@ -634,10 +618,10 @@ return $\boldsymbol{\hat{c}}$
|
||||
\begin{frame}[t]
|
||||
\frametitle{Proximal Decoding: Oscillation of Estimate}
|
||||
|
||||
\vspace*{-5mm}
|
||||
|
||||
\begin{itemize}
|
||||
\item $\nabla L \left( \boldsymbol{y} \mid \tilde{\boldsymbol{x}} \right) $
|
||||
and $\nabla h \left( \tilde{\boldsymbol{x}} \right) $ generally end up
|
||||
in an equilibrium
|
||||
\item Single decoding using the BCH$\left( 7,4 \right) $ code; $E_b / N_0 = \SI{5}{dB}$
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}[H]
|
||||
@ -829,13 +813,13 @@ return $\boldsymbol{\hat{c}}$
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{minipage}
|
||||
|
||||
\caption{Internal variables of proximal decoder
|
||||
as a function of the number of iterations ($n=7$)\footnotemark}
|
||||
|
||||
\footnotetext{A single decoding is shown, using the BCH$\left( 7,4 \right) $ code;
|
||||
$\gamma = 0.05, \omega = 0.05, E_b / N_0 = \SI{5}{dB}$}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item $\nabla L \left( \boldsymbol{y} \mid \tilde{\boldsymbol{x}} \right) $
|
||||
and $\nabla h \left( \tilde{\boldsymbol{x}} \right) $ generally end up
|
||||
in an equilibrium
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
@ -843,6 +827,8 @@ return $\boldsymbol{\hat{c}}$
|
||||
\begin{frame}[t]
|
||||
\frametitle{Proximal Decoding: Visualization of Gradients}
|
||||
|
||||
\vspace*{-5mm}
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
|
||||
@ -928,9 +914,9 @@ return $\boldsymbol{\hat{c}}$
|
||||
\frametitle{Proximal Decoder: Oscillation of $\nabla h\left( \tilde{\boldsymbol{x}} \right) $}
|
||||
|
||||
\begin{itemize}
|
||||
\item For larger $n$, the gradient itself starts to oscillate
|
||||
\item The dynamic range of the oscillation is highly correlated
|
||||
with the probability of a bit error
|
||||
\item Single decoding using a (3,6) regular LDPC code with $n=204, k=102$
|
||||
\cite[\text{204.33.484}]{mackay_enc}
|
||||
% ; $\gamma = 0.05, \omega = 0.05, E_b / N_0 = \SI{5}{dB}$
|
||||
\end{itemize}
|
||||
|
||||
\begin{figure}
|
||||
@ -963,9 +949,6 @@ return $\boldsymbol{\hat{c}}$
|
||||
\addlegendentry{$\left(\nabla h \right)_1$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Internal variables of proximal decoder as a function of the iteration
|
||||
($n=204$)\footnotemark}
|
||||
\end{subfigure}%
|
||||
\begin{subfigure}[t]{0.5\textwidth}
|
||||
\centering
|
||||
@ -988,15 +971,13 @@ return $\boldsymbol{\hat{c}}$
|
||||
{res/proximal/extreme_components_20433484_variance.csv};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Correlation between bit error and dynamic range of oscillation}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\footnotetext{A single decoding is shown, using a (3,6) regular LDPC code
|
||||
with $n=204, k=102$ \cite[\text{204.33.484}]{mackay_enc};
|
||||
$\gamma = 0.05, \omega = 0.05, E_b / N_0 = \SI{5}{dB}$}
|
||||
\begin{itemize}
|
||||
\item For larger $n$, the gradient itself starts to oscillate
|
||||
\item Dynamic range of oscillation highly correlated with probability of bit error
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
@ -1119,7 +1100,7 @@ return $\boldsymbol{\hat{c}}$
|
||||
\vspace*{-0.5cm}
|
||||
|
||||
\begin{itemize}
|
||||
\item Improvement of proximal decoding by adding an ``ML-in-the-List'' step after
|
||||
\item Improvement of proximal decoding by addition of ``ML-in-the-List'' step after
|
||||
iterating
|
||||
\end{itemize}
|
||||
|
||||
|
||||
@ -9,13 +9,11 @@
|
||||
\begin{frame}[t]
|
||||
\frametitle{Motivation}
|
||||
\begin{itemize}
|
||||
\item The general [ML] decoding problem for linear codes and the general problem
|
||||
of finding the weights of a linear code are both NP-complete \cite{ml_np_hard_proof}.
|
||||
\item The general ML decoding problem is NP-complete \cite{ml_np_hard_proof}
|
||||
\item The iterative message–passing algorithms preferred in practice do not guarantee
|
||||
optimality and may fail to decode correctly when the graph contains cycles
|
||||
\cite{ldpc_conv}.
|
||||
\item The standard message-passing algorithms used for decoding LDPC and turbo codes
|
||||
are often difficult to analyze. \cite{feldman_thesis}
|
||||
optimality when the graph contains cycles \cite{ldpc_conv}
|
||||
\item The standard message-passing algorithms are often difficult to
|
||||
analyze \cite{feldman_thesis}
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user