Restructured main.py

This commit is contained in:
Andreas Tsouchlos 2022-11-08 19:10:51 +01:00
parent d8258a36f6
commit 6fc01b20ff

View File

@ -2,75 +2,102 @@ import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from timeit import default_timer as timer
import typing
from pathlib import Path
import os
from itertools import chain
from decoders import proximal, naive_soft_decision
from utility import noise, simulations, encoders, codes
from utility import simulations, encoders, codes
def main():
# used_code = "Hamming_7_4"
# used_code = "Golay_24_12"
# used_code = "BCH_31_16"
# used_code = "BCH_31_21"
used_code = "BCH_63_16"
G = codes.Gs[used_code]
H = codes.get_systematic_H(G)
R = codes.get_systematic_R(G)
# Define encoder and decoders
encoder = encoders.Encoder(G)
decoders = {
# "naive_soft_decision": naive_soft_decision.SoftDecisionDecoder(G, H, R),
"proximal_0_01": proximal.ProximalDecoder(H, R, K=100, gamma=0.01),
"proximal_0_05": proximal.ProximalDecoder(H, R, K=100, gamma=0.05),
"proximal_0_15": proximal.ProximalDecoder(H, R, K=100, gamma=0.15),
}
# Test decoders
def test_decoders(G, encoder, decoders: typing.List) -> pd.DataFrame:
k, n = G.shape
d = np.zeros(k) # All-zeros assumption
SNRs = np.linspace(1, 8, 9)
SNRs = np.linspace(1, 8, 8)
data = pd.DataFrame({"SNR": SNRs})
start_time = timer()
for decoder_name in decoders:
decoder = decoders[decoder_name]
_, BERs_sd = simulations.test_decoder(encoder=encoder,
decoder=decoder,
d=d,
SNRs=SNRs,
target_bit_errors=500,
N_max=10000)
target_bit_errors=100,
N_max=30000)
data[f"BER_{decoder_name}"] = BERs_sd
stop_time = timer()
print(f"Elapsed time: {stop_time - start_time:2f}")
return data
# Plot results
# TODO: Fix spacing between axes and margins
def plot_results():
results_dir = "sim_results"
code_paths = {}
for file in os.listdir(results_dir):
if file.endswith(".csv"):
code_paths[file.replace(".csv", "")] = os.path.join(results_dir, file)
sns.set_theme()
fig, axes = plt.subplots(1, 1)
fig.suptitle("Bit-Error-Rates of various decoders")
fig, axes = plt.subplots(2, len(code_paths) // 2, figsize=(12, 6))
fig.suptitle("Bit-Error-Rates of various decoders for different codes")
for decoder_name in decoders:
ax = sns.lineplot(data=data, x="SNR", y=f"BER_{decoder_name}", label=f"{decoder_name}")
axes = list(chain.from_iterable(axes))
ax.set_title(used_code)
ax.set(yscale="log")
ax.set_yticks([10e-5, 10e-4, 10e-3, 10e-2, 10e-1, 10e0])
ax.legend()
for i, code in enumerate(code_paths):
data = pd.read_csv(code_paths[code])
column_names = [column for column in data.columns.values.tolist()
if column.startswith("BER")]
ax = axes[i]
for column in column_names:
sns.lineplot(ax=ax, data=data, x="SNR", y=column, label=column.lstrip("BER_"))
ax.set_title(code)
ax.set(yscale="log")
ax.set_xlabel("SNR")
ax.set_ylabel("BER")
ax.set_yticks([10e-5, 10e-4, 10e-3, 10e-2, 10e-1, 10e0])
ax.legend()
plt.show()
def main():
Path("sim_results").mkdir(parents=True, exist_ok=True)
used_codes = [
"Hamming_7_4",
"Golay_24_12",
# "BCH_31_16",
# "BCH_31_21",
# "BCH_63_16",
]
for used_code in used_codes:
G = codes.Gs[used_code]
H = codes.get_systematic_H(G)
R = codes.get_systematic_R(G)
encoder = encoders.Encoder(G)
decoders = {
"naive_soft_decision": naive_soft_decision.SoftDecisionDecoder(G, H, R),
"proximal_0_01": proximal.ProximalDecoder(H, R, K=100, gamma=0.01),
"proximal_0_05": proximal.ProximalDecoder(H, R, K=100, gamma=0.05),
"proximal_0_15": proximal.ProximalDecoder(H, R, K=100, gamma=0.15),
}
# data = test_decoders(G, encoder, decoders)
# data.to_csv(f"sim_results/{used_code}.csv")
plot_results()
if __name__ == "__main__":
main()