Added conclusion slide; Fixed Boyd book citation
This commit is contained in:
parent
788364f12d
commit
56cb023318
@ -77,9 +77,9 @@
|
||||
institution = {KIT},
|
||||
}
|
||||
|
||||
@BOOK{distr_opt_book,
|
||||
@book{distr_opt_book,
|
||||
author = {Boyd, Stephen and Parikh, Neal and Chu, Eric and Peleato, Borja and Eckstein, Jonathan},
|
||||
booktitle = {Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers},
|
||||
title = {Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers},
|
||||
year = {2011},
|
||||
volume = {},
|
||||
number = {},
|
||||
|
||||
@ -1504,74 +1504,23 @@ $\textcolor{KITblue}{\text{Output }\boldsymbol{\tilde{c}}_n\text{ with lowest }d
|
||||
\end{frame}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%\begin{frame}[t, fragile]
|
||||
% \frametitle{Proximal Decoding: Improvement using ``ML-on-List''}
|
||||
% \setcounter{footnote}{0}
|
||||
%
|
||||
% \begin{itemize}
|
||||
% \item Improvement of proximal decoding by adding an ``ML-on-list'' step after iterating
|
||||
% \end{itemize}
|
||||
%
|
||||
% \begin{minipage}[t]{.48\textwidth}
|
||||
% \centering
|
||||
%
|
||||
% \begin{figure}
|
||||
% \centering
|
||||
%
|
||||
% \begin{algorithm}[caption={}, label={},
|
||||
% basicstyle=\fontsize{7.5}{9.5}\selectfont
|
||||
% ]
|
||||
%$\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$
|
||||
%for $k=0$ to $K-1$ do
|
||||
% $\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $
|
||||
% Compute $\nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right)$
|
||||
% $\boldsymbol{s}^{\left( k+1 \right)} = \boldsymbol{r}^{(k+1)} - \gamma \nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right) $
|
||||
% $\boldsymbol{\hat{x}} = \text{sign}\left( \boldsymbol{s}^{\left( k+1 \right) } \right) $
|
||||
% If $\boldsymbol{\hat{x}}$ passes the parity check condition, break the loop.
|
||||
%end for
|
||||
%Output $\boldsymbol{\hat{x}}$
|
||||
% \end{algorithm}
|
||||
%
|
||||
% \caption{Proximal decoding algorithm \cite{proximal_paper}}
|
||||
% \end{figure}
|
||||
%
|
||||
% \end{minipage}%
|
||||
% \hfill\begin{minipage}[t]{.48\textwidth}
|
||||
% \centering
|
||||
% \begin{figure}
|
||||
% \centering
|
||||
%
|
||||
% \begin{algorithm}[caption={}, label={},
|
||||
% basicstyle=\fontsize{7.5}{9.5}\selectfont
|
||||
% ]
|
||||
%$\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$
|
||||
%for $k=0$ to $K-1$ do
|
||||
% $\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $
|
||||
% Compute $\nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right)$
|
||||
% $\boldsymbol{s}^{\left( k+1 \right)} = \boldsymbol{r}^{(k+1)} - \gamma \nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right) $
|
||||
% $\boldsymbol{\hat{x}} = \text{sign}\left( \boldsymbol{s}^{\left( k+1 \right) } \right) $
|
||||
% $\textcolor{KITblue}{\text{If }\boldsymbol{\hat{x}}\text{ passes the parity check condition, output }\boldsymbol{\hat{x}}}$
|
||||
%end for
|
||||
%$\textcolor{KITblue}{\text{Find }N\text{ most probably wrong bits.}}$
|
||||
%$\textcolor{KITblue}{\text{Generate variations } \boldsymbol{\tilde{x}}_n\text{ of }\boldsymbol{\hat{x}}\text{ with the }N\text{ bits modified.}}$
|
||||
%$\textcolor{KITblue}{\text{Compute }\langle \boldsymbol{ \tilde{x}}_n, \boldsymbol{\hat{x}} \rangle \forall n \in \left[ 1 : N-1 \right]}$
|
||||
%$\textcolor{KITblue}{\text{Output }\boldsymbol{\tilde{x}}_n\text{ with lowest }\langle \boldsymbol{ \tilde{x}}_n, \boldsymbol{\hat{x}} \rangle}$
|
||||
% \end{algorithm}
|
||||
%
|
||||
% \caption{Hybrid proximal \& ML decoding algorithm}
|
||||
% \end{figure}
|
||||
% \end{minipage}
|
||||
%\end{frame}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%\subsection{ADMM: Examination Results}%
|
||||
%\label{sub:Ex ADMM}
|
||||
%
|
||||
%\begin{frame}[t]
|
||||
% \frametitle{ADMM}
|
||||
%
|
||||
% \todo{TODO}
|
||||
%\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\begin{frame}[t]
|
||||
\frametitle{Conclusion}
|
||||
|
||||
\begin{itemize}
|
||||
\item Analysis of proximal decoding for AWGN channels:
|
||||
\begin{itemize}
|
||||
\item Error coding performance (BER, FER, decoding failures)
|
||||
\item Computational performance ($\mathcal{O}\left( n \right) $ time complexity,
|
||||
fast implementation possible)
|
||||
\item Number of iterations required independant of SNR
|
||||
\item Operation during iteration (oscillation of estimate)
|
||||
\end{itemize}
|
||||
\item Suggestion for improvement of proximal decoding:
|
||||
\begin{itemize}
|
||||
\item Addidion of ``ML-on-list'' step
|
||||
\item $\sim\SI{1}{dB}$ gain under certain conditions
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
@ -16,7 +16,7 @@
|
||||
\item ADMM is intended to blend the decomposability
|
||||
of dual ascent with the superior convergence properties of the method
|
||||
of multipliers \cite{distr_opt_book}
|
||||
\item Recently, ADMM has been proposed for efficient LP Decoding
|
||||
\item ADMM has been proposed for efficient LP Decoding
|
||||
\cite{efficient_lp_dec_admm}
|
||||
\end{itemize}
|
||||
\item Compare ADMM implementation with Proximal Decoding implementation with respect to
|
||||
|
||||
Loading…
Reference in New Issue
Block a user