Added conclusion slide; Fixed Boyd book citation

This commit is contained in:
Andreas Tsouchlos 2023-01-26 15:33:16 +01:00
parent 788364f12d
commit 56cb023318
3 changed files with 23 additions and 74 deletions

View File

@ -77,9 +77,9 @@
institution = {KIT}, institution = {KIT},
} }
@BOOK{distr_opt_book, @book{distr_opt_book,
author = {Boyd, Stephen and Parikh, Neal and Chu, Eric and Peleato, Borja and Eckstein, Jonathan}, author = {Boyd, Stephen and Parikh, Neal and Chu, Eric and Peleato, Borja and Eckstein, Jonathan},
booktitle = {Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers}, title = {Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers},
year = {2011}, year = {2011},
volume = {}, volume = {},
number = {}, number = {},

View File

@ -1504,74 +1504,23 @@ $\textcolor{KITblue}{\text{Output }\boldsymbol{\tilde{c}}_n\text{ with lowest }d
\end{frame} \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{frame}[t, fragile] \begin{frame}[t]
% \frametitle{Proximal Decoding: Improvement using ``ML-on-List''} \frametitle{Conclusion}
% \setcounter{footnote}{0}
%
% \begin{itemize}
% \item Improvement of proximal decoding by adding an ``ML-on-list'' step after iterating
% \end{itemize}
%
% \begin{minipage}[t]{.48\textwidth}
% \centering
%
% \begin{figure}
% \centering
%
% \begin{algorithm}[caption={}, label={},
% basicstyle=\fontsize{7.5}{9.5}\selectfont
% ]
%$\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$
%for $k=0$ to $K-1$ do
% $\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $
% Compute $\nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right)$
% $\boldsymbol{s}^{\left( k+1 \right)} = \boldsymbol{r}^{(k+1)} - \gamma \nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right) $
% $\boldsymbol{\hat{x}} = \text{sign}\left( \boldsymbol{s}^{\left( k+1 \right) } \right) $
% If $\boldsymbol{\hat{x}}$ passes the parity check condition, break the loop.
%end for
%Output $\boldsymbol{\hat{x}}$
% \end{algorithm}
%
% \caption{Proximal decoding algorithm \cite{proximal_paper}}
% \end{figure}
%
% \end{minipage}%
% \hfill\begin{minipage}[t]{.48\textwidth}
% \centering
% \begin{figure}
% \centering
%
% \begin{algorithm}[caption={}, label={},
% basicstyle=\fontsize{7.5}{9.5}\selectfont
% ]
%$\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$
%for $k=0$ to $K-1$ do
% $\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $
% Compute $\nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right)$
% $\boldsymbol{s}^{\left( k+1 \right)} = \boldsymbol{r}^{(k+1)} - \gamma \nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right) $
% $\boldsymbol{\hat{x}} = \text{sign}\left( \boldsymbol{s}^{\left( k+1 \right) } \right) $
% $\textcolor{KITblue}{\text{If }\boldsymbol{\hat{x}}\text{ passes the parity check condition, output }\boldsymbol{\hat{x}}}$
%end for
%$\textcolor{KITblue}{\text{Find }N\text{ most probably wrong bits.}}$
%$\textcolor{KITblue}{\text{Generate variations } \boldsymbol{\tilde{x}}_n\text{ of }\boldsymbol{\hat{x}}\text{ with the }N\text{ bits modified.}}$
%$\textcolor{KITblue}{\text{Compute }\langle \boldsymbol{ \tilde{x}}_n, \boldsymbol{\hat{x}} \rangle \forall n \in \left[ 1 : N-1 \right]}$
%$\textcolor{KITblue}{\text{Output }\boldsymbol{\tilde{x}}_n\text{ with lowest }\langle \boldsymbol{ \tilde{x}}_n, \boldsymbol{\hat{x}} \rangle}$
% \end{algorithm}
%
% \caption{Hybrid proximal \& ML decoding algorithm}
% \end{figure}
% \end{minipage}
%\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{ADMM: Examination Results}%
%\label{sub:Ex ADMM}
%
%\begin{frame}[t]
% \frametitle{ADMM}
%
% \todo{TODO}
%\end{frame}
\begin{itemize}
\item Analysis of proximal decoding for AWGN channels:
\begin{itemize}
\item Error coding performance (BER, FER, decoding failures)
\item Computational performance ($\mathcal{O}\left( n \right) $ time complexity,
fast implementation possible)
\item Number of iterations required independant of SNR
\item Operation during iteration (oscillation of estimate)
\end{itemize}
\item Suggestion for improvement of proximal decoding:
\begin{itemize}
\item Addidion of ``ML-on-list'' step
\item $\sim\SI{1}{dB}$ gain under certain conditions
\end{itemize}
\end{itemize}
\end{frame}

View File

@ -16,7 +16,7 @@
\item ADMM is intended to blend the decomposability \item ADMM is intended to blend the decomposability
of dual ascent with the superior convergence properties of the method of dual ascent with the superior convergence properties of the method
of multipliers \cite{distr_opt_book} of multipliers \cite{distr_opt_book}
\item Recently, ADMM has been proposed for efficient LP Decoding \item ADMM has been proposed for efficient LP Decoding
\cite{efficient_lp_dec_admm} \cite{efficient_lp_dec_admm}
\end{itemize} \end{itemize}
\item Compare ADMM implementation with Proximal Decoding implementation with respect to \item Compare ADMM implementation with Proximal Decoding implementation with respect to