Fixed convergence figure

This commit is contained in:
Andreas Tsouchlos 2023-04-11 20:39:09 +02:00
parent 0d4b13ccda
commit 4981c220cd

View File

@ -757,15 +757,14 @@ as the gradients of the negative log-likelihood and the code-constraint
polynomial, which influence the next estimate.
\begin{figure}[h]
\begin{minipage}[c]{0.25\textwidth}
\begin{subfigure}[t]{0.48\textwidth}
\centering
\begin{tikzpicture}[scale = 0.35]
\begin{tikzpicture}
\begin{axis}[
grid=both,
xlabel={Iterations},
width=8cm,
height=3cm,
width=0.9\textwidth,
height=0.3\textwidth,
scale only axis,
xtick={0, 50, ..., 200},
xticklabels={0, 25, ..., 100},
@ -783,13 +782,17 @@ polynomial, which influence the next estimate.
\addlegendentry{$\left(\nabla L \right)_2$}
\addlegendentry{$\left(\nabla h \right)_2 $}
\end{axis}
\end{tikzpicture}\\
\begin{tikzpicture}[scale = 0.35]
\end{tikzpicture}
\end{subfigure}%
\hfill
\begin{subfigure}[t]{0.48\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
grid=both,
xlabel={Iterations},
width=8cm,
height=3cm,
width=0.9\textwidth,
height=0.3\textwidth,
scale only axis,
xtick={0, 50, ..., 200},
xticklabels={0, 25, ..., 100},
@ -807,13 +810,17 @@ polynomial, which influence the next estimate.
\addlegendentry{$\left(\nabla L \right)_3$}
\addlegendentry{$\left(\nabla h \right)_3 $}
\end{axis}
\end{tikzpicture}\\
\begin{tikzpicture}[scale = 0.35]
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}[t]{0.48\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
grid=both,
xlabel={Iterations},
width=8cm,
height=3cm,
width=0.9\textwidth,
height=0.3\textwidth,
scale only axis,
xtick={0, 50, ..., 200},
xticklabels={0, 25, ..., 100},
@ -832,51 +839,16 @@ polynomial, which influence the next estimate.
\addlegendentry{$\left(\nabla h \right)_4 $}
\end{axis}
\end{tikzpicture}
\end{minipage}%
\begin{minipage}[c]{0.5\textwidth}
\vspace*{-1cm}
\end{subfigure}%
\hfill
\begin{subfigure}[t]{0.48\textwidth}
\centering
\begin{tikzpicture}[scale = 0.85, spy using outlines={circle, magnification=6,
connect spies}]
\begin{tikzpicture}
\begin{axis}[
grid=both,
xlabel={Iterations},
width=8cm,
height=3cm,
scale only axis,
xtick={0, 50, ..., 200},
xticklabels={0, 25, ..., 100},
]
\addplot [NavyBlue, mark=none, line width=1]
table [col sep=comma, x=k, y=comb_r_s_0]
{res/proximal/comp_bch_7_4_combined.csv};
\addplot [ForestGreen, mark=none, line width=1]
table [col sep=comma, x=k, y=grad_L_0]
{res/proximal/comp_bch_7_4_combined.csv};
\addplot [RedOrange, mark=none, line width=1]
table [col sep=comma, x=k, y=grad_h_0]
{res/proximal/comp_bch_7_4_combined.csv};
\addlegendentry{est}
\addlegendentry{$\left(\nabla L \right)_1$}
\addlegendentry{$\left(\nabla h \right)_1 $}
\coordinate (spypoint) at (axis cs:100,0.53);
\coordinate (magnifyglass) at (axis cs:175,2);
\end{axis}
\spy [black, size=2cm] on (spypoint)
in node[fill=white] at (magnifyglass);
\end{tikzpicture}
\end{minipage}%
\begin{minipage}[c]{0.25\textwidth}
\centering
\begin{tikzpicture}[scale = 0.35]
\begin{axis}[
grid=both,
xlabel={Iterations},
width=8cm,
height=3cm,
width=0.9\textwidth,
height=0.3\textwidth,
scale only axis,
xtick={0, 50, ..., 200},
xticklabels={0, 25, ..., 100},
@ -894,13 +866,17 @@ polynomial, which influence the next estimate.
\addlegendentry{$\left(\nabla L \right)_5$}
\addlegendentry{$\left(\nabla h \right)_5 $}
\end{axis}
\end{tikzpicture}\\
\begin{tikzpicture}[scale = 0.35]
\end{tikzpicture}
\end{subfigure}%
\begin{subfigure}[t]{0.48\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
grid=both,
xlabel={Iterations},
width=8cm,
height=3cm,
width=0.9\textwidth,
height=0.3\textwidth,
scale only axis,
xtick={0, 50, ..., 200},
xticklabels={0, 25, ..., 100},
@ -918,13 +894,17 @@ polynomial, which influence the next estimate.
\addlegendentry{$\left(\nabla L \right)_6$}
\addlegendentry{$\left(\nabla h \right)_6 $}
\end{axis}
\end{tikzpicture}\\
\begin{tikzpicture}[scale = 0.35]
\end{tikzpicture}
\end{subfigure}%
\hfill
\begin{subfigure}[t]{0.48\textwidth}
\centering
\begin{tikzpicture}
\begin{axis}[
grid=both,
xlabel={Iterations},
width=8cm,
height=3cm,
width=0.9\textwidth,
height=0.3\textwidth,
scale only axis,
xtick={0, 50, ..., 200},
xticklabels={0, 25, ..., 100},
@ -943,15 +923,51 @@ polynomial, which influence the next estimate.
\addlegendentry{$\left(\nabla h \right)_7 $}
\end{axis}
\end{tikzpicture}
\end{minipage}
\end{subfigure}
\caption{Internal variables of proximal decoder
as a function of the number of iterations ($n=7$)\protect\footnotemark{}}
\vspace{5mm}
\begin{subfigure}[t]{\textwidth}
\centering
\begin{tikzpicture}[spy using outlines={circle, magnification=6,
connect spies}]
\begin{axis}[
grid=both,
xlabel={Iterations},
width=0.6\textwidth,
height=0.225\textwidth,
scale only axis,
xtick={0, 50, ..., 200},
xticklabels={0, 25, ..., 100},
]
\addplot [NavyBlue, mark=none, line width=1]
table [col sep=comma, x=k, y=comb_r_s_0]
{res/proximal/comp_bch_7_4_combined.csv};
\addplot [ForestGreen, mark=none, line width=1]
table [col sep=comma, x=k, y=grad_L_0]
{res/proximal/comp_bch_7_4_combined.csv};
\addplot [RedOrange, mark=none, line width=1]
table [col sep=comma, x=k, y=grad_h_0]
{res/proximal/comp_bch_7_4_combined.csv};
\addlegendentry{est}
\addlegendentry{$\left(\nabla L \right)_1$}
\addlegendentry{$\left(\nabla h \right)_1 $}
\coordinate (spypoint) at (axis cs:100,1.11);
\coordinate (magnifyglass) at (axis cs:-75,0);
\end{axis}
\spy [black, size=2cm] on (spypoint)
in node[fill=white] at (magnifyglass);
\end{tikzpicture}
\end{subfigure}
\caption{Visualization of a single decoding operation\protect\footnotemark{}
for a code with $n=7$}
\label{fig:prox:convergence}
\end{figure}%
%
\footnotetext{A single decoding is shown, using the BCH$\left( 7,4 \right) $ code;
$\gamma = 0.05, \omega = 0.05, E_b / N_0 = \SI{5}{dB}$
\footnotetext{BCH$\left( 7,4 \right) $ code; $\gamma = 0.05, \omega = 0.05, K=200,
\eta = 1.5, E_b / N_0 = \SI{5}{dB}$
}%
%
\noindent It is evident that in all cases, past a certain number of
@ -1146,7 +1162,8 @@ an invalid codeword.
\end{figure}%
%
\footnotetext{(3,6) regular \ac{LDPC} code with n = 204, k = 102
\cite[\text{204.33.484}]{mackay_enc}; $\gamma=0.05, \omega = 0.05, K=200, \eta=1.5$
\cite[\text{204.33.484}]{mackay_enc}; $\gamma=0.05, \omega = 0.05, K=200, \eta=1.5,
E_b / N_0 = \SI{5}{dB}$
}%
%