From 364a85248f7912d0dd1c83c2b5d12a2c416e817d Mon Sep 17 00:00:00 2001 From: Andreas Tsouchlos Date: Mon, 23 Jan 2023 20:42:54 +0100 Subject: [PATCH] Added comparison between proximal and hybrid decoding --- .../midterm/sections/examination_results.tex | 61 +++++++++++++++++++ 1 file changed, 61 insertions(+) diff --git a/latex/presentations/midterm/sections/examination_results.tex b/latex/presentations/midterm/sections/examination_results.tex index a545282..bd82517 100644 --- a/latex/presentations/midterm/sections/examination_results.tex +++ b/latex/presentations/midterm/sections/examination_results.tex @@ -347,6 +347,67 @@ Output $\boldsymbol{\tilde{x}}_n$ with lowest $d\left( \boldsymbol{ \tilde{x}}_n \end{frame} +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\begin{frame}[t, fragile] + \frametitle{Proximal Decoding: Improvement using ``ML-on-List''} + \setcounter{footnote}{0} + + \begin{itemize} + \item Improvement of proximal decoding by adding an ``ML-on-list'' step after iterating + \end{itemize} + + \begin{minipage}[t]{.48\textwidth} + \centering + + \begin{figure} + \centering + + \begin{algorithm}[caption={}, label={}, + basicstyle=\fontsize{7.5}{9.5}\selectfont + ] +$\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$ +for $k=0$ to $K-1$ do + $\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $ + Compute $\nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right)$ + $\boldsymbol{s}^{\left( k+1 \right)} = \boldsymbol{r}^{(k+1)} - \gamma \nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right) $ + $\boldsymbol{\hat{x}} = \text{sign}\left( \boldsymbol{s}^{\left( k+1 \right) } \right) $ + If $\boldsymbol{\hat{x}}$ passes the parity check condition, break the loop. +end for +Output $\boldsymbol{\hat{x}}$ + \end{algorithm} + + \caption{Proximal decoding algorithm} + \end{figure} + + \end{minipage}% + \hfill\begin{minipage}[t]{.48\textwidth} + \centering + \begin{figure} + \centering + + \begin{algorithm}[caption={}, label={}, + basicstyle=\fontsize{7.5}{9.5}\selectfont + ] +$\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$ +for $k=0$ to $K-1$ do + $\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $ + Compute $\nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right)$ + $\boldsymbol{s}^{\left( k+1 \right)} = \boldsymbol{r}^{(k+1)} - \gamma \nabla h\left( \boldsymbol{r}^{\left( k+1 \right) } \right) $ + $\boldsymbol{\hat{x}} = \text{sign}\left( \boldsymbol{s}^{\left( k+1 \right) } \right) $ + $\textcolor{KITblue}{\text{If }\boldsymbol{\hat{x}}\text{ passes the parity check condition, output }\boldsymbol{\hat{x}}}$ +end for +$\textcolor{KITblue}{\text{Find }N\text{ most probably wrong bits.}}$ +$\textcolor{KITblue}{\text{Generate variations } \boldsymbol{\tilde{x}}_n\text{ of }\boldsymbol{\hat{x}}\text{ with the }N\text{ bits modified.}}$ +$\textcolor{KITblue}{\text{Compute }d_H\left( \boldsymbol{ \tilde{x}}_n, \boldsymbol{\hat{x}} \right) \forall n \in \left[ 1 : N-1 \right]}$ +$\textcolor{KITblue}{\text{Output }\boldsymbol{\tilde{x}}_n\text{ with lowest }d_H\left( \boldsymbol{ \tilde{x}}_n, \boldsymbol{\hat{x}} \right)}$ + \end{algorithm} + + \caption{Hybrid proximal \& ML decoding algorithm} + \end{figure} + \end{minipage} +\end{frame} + + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{ADMM: Examination Results}% \label{sub:Ex ADMM}