diff --git a/latex/thesis/bibliography.bib b/latex/thesis/bibliography.bib index 1795895..6a859dc 100644 --- a/latex/thesis/bibliography.bib +++ b/latex/thesis/bibliography.bib @@ -121,3 +121,14 @@ doi={10.1109/TIT.2020.2984247} } +@ARTICLE{original_admm, + author={Barman, Siddharth and Liu, Xishuo and Draper, Stark C. and Recht, Benjamin}, + journal={IEEE Transactions on Information Theory}, + title={Decomposition Methods for Large Scale LP Decoding}, + year={2013}, + volume={59}, + number={12}, + pages={7870-7886}, + doi={10.1109/TIT.2013.2281372} +} + diff --git a/latex/thesis/chapters/decoding_techniques.tex b/latex/thesis/chapters/decoding_techniques.tex index b9e0c36..95bc066 100644 --- a/latex/thesis/chapters/decoding_techniques.tex +++ b/latex/thesis/chapters/decoding_techniques.tex @@ -692,9 +692,9 @@ The resulting formulation of the relaxed optimization problem becomes:% \begin{itemize} \item Distributed nature, making it a competitor to BP (which can also be implemented in a distributed manner) - (See original ADMM paper) + \cite[Sec. I]{original_admm} \item Computational performance similar to BP has been demnonstrated - (See original ADMM paper) + \cite[Sec. I]{original_admm} \end{itemize} \item Adaptive linear programming? \item How ADMM is adapted to LP decoding diff --git a/latex/thesis/chapters/introduction.tex b/latex/thesis/chapters/introduction.tex index 011116b..1036cc2 100644 --- a/latex/thesis/chapters/introduction.tex +++ b/latex/thesis/chapters/introduction.tex @@ -6,10 +6,10 @@ \item Problem definition \item Motivation \begin{itemize} - \item Error floor when decoding with BP (seems to not be persent with LP decoding - - see original ADMM paper introduction) + \item Error floor when decoding with BP (seems to not be persent with LP decoding + \cite[Sec. I]{original_admm}) \item Strong theoretical guarantees that allow for better and better approximations - for ML decoding (See original ADMM peper introduction) + for ML decoding \cite[Sec. I]{original_admm} \end{itemize} \item Results summary \end{itemize}