Added Encoder class and modified interface of utility.test_decoder()
This commit is contained in:
parent
26fa791872
commit
2c620a77df
24
sw/decoders/channel.py
Normal file
24
sw/decoders/channel.py
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
# TODO: Should the encoder be responsible for mapping the message from [0, 1]^n to [-1, 1]^n?
|
||||||
|
# (ie. should the encoder perform modulation?)
|
||||||
|
class Encoder:
|
||||||
|
"""Class implementing an encoder for block codes.
|
||||||
|
"""
|
||||||
|
def __init__(self, G: np.array):
|
||||||
|
"""Construct a new Encoder object.
|
||||||
|
|
||||||
|
:param G: Generator matrix
|
||||||
|
"""
|
||||||
|
self._G = G
|
||||||
|
|
||||||
|
def encode(self, d: np.array) -> np.array:
|
||||||
|
"""Map a given dataword onto the corresponding codeword.
|
||||||
|
|
||||||
|
The returned codeword is mapped from [0, 1]^n onto [-1, 1]^n.
|
||||||
|
|
||||||
|
:param d: Dataword (element of [0, 1]^n)
|
||||||
|
:return: Codeword (already element of [-1, 1]^n)
|
||||||
|
"""
|
||||||
|
return np.dot(d, self._G) * 2 - 1
|
||||||
@ -43,26 +43,28 @@ def count_bit_errors(d: np.array, d_hat: np.array) -> int:
|
|||||||
return np.sum(d != d_hat)
|
return np.sum(d != d_hat)
|
||||||
|
|
||||||
|
|
||||||
def test_decoder(decoder: typing.Any,
|
def test_decoder(encoder: typing.Any,
|
||||||
|
decoder: typing.Any,
|
||||||
d: np.array,
|
d: np.array,
|
||||||
c: np.array,
|
|
||||||
SNRs: typing.Sequence[float] = np.linspace(1, 4, 7),
|
SNRs: typing.Sequence[float] = np.linspace(1, 4, 7),
|
||||||
target_bit_errors=100,
|
target_bit_errors: int = 100,
|
||||||
N_max=10000) \
|
N_max: int = 10000) \
|
||||||
-> typing.Tuple[np.array, np.array]:
|
-> typing.Tuple[np.array, np.array]:
|
||||||
"""Calculate the Bit Error Rate (BER) for a given decoder for a number of SNRs.
|
"""Calculate the Bit Error Rate (BER) for a given decoder for a number of SNRs.
|
||||||
|
|
||||||
This function prints its progress to stdout.
|
This function prints its progress to stdout.
|
||||||
|
|
||||||
|
:param encoder: Instance of the encoder used to generate the codeword to transmit
|
||||||
:param decoder: Instance of the decoder to be tested
|
:param decoder: Instance of the decoder to be tested
|
||||||
:param d: Dataword (element of [0, 1]^n)
|
:param d: Dataword (element of [0, 1]^n)
|
||||||
:param c: Codeword whose transmission is to be simulated (element of [0, 1]^n)
|
|
||||||
:param SNRs: List of SNRs for which the BER should be calculated
|
:param SNRs: List of SNRs for which the BER should be calculated
|
||||||
:param target_bit_errors: Number of bit errors after which to stop the simulation
|
:param target_bit_errors: Number of bit errors after which to stop the simulation
|
||||||
:param N_max: Maximum number of iterations to perform for each SNR
|
:param N_max: Maximum number of iterations to perform for each SNR
|
||||||
:return: Tuple of numpy arrays of the form (SNRs, BERs)
|
:return: Tuple of numpy arrays of the form (SNRs, BERs)
|
||||||
"""
|
"""
|
||||||
x = c * 2 - 1 # Map the codeword from [0, 1]^n to [-1, 1]^n
|
|
||||||
|
x = encoder.encode(d)
|
||||||
|
|
||||||
BERs = []
|
BERs = []
|
||||||
for SNR in tqdm(SNRs, desc="Calculating Bit-Error-Rates",
|
for SNR in tqdm(SNRs, desc="Calculating Bit-Error-Rates",
|
||||||
position=0,
|
position=0,
|
||||||
@ -79,10 +81,11 @@ def test_decoder(decoder: typing.Any,
|
|||||||
# TODO: Is this a valid simulation? Can we just add AWGN to the codeword, ignoring and modulation and (
|
# TODO: Is this a valid simulation? Can we just add AWGN to the codeword, ignoring and modulation and (
|
||||||
# e.g. matched) filtering?
|
# e.g. matched) filtering?
|
||||||
y = add_awgn(x, SNR, signal_amp=np.sqrt(2))
|
y = add_awgn(x, SNR, signal_amp=np.sqrt(2))
|
||||||
|
|
||||||
y_hat = decoder.decode(y)
|
y_hat = decoder.decode(y)
|
||||||
|
|
||||||
total_bit_errors += count_bit_errors(d, y_hat)
|
total_bit_errors += count_bit_errors(d, y_hat)
|
||||||
total_bits += c.size
|
total_bits += x.size
|
||||||
|
|
||||||
if total_bit_errors >= target_bit_errors:
|
if total_bit_errors >= target_bit_errors:
|
||||||
break
|
break
|
||||||
|
|||||||
24
sw/main.py
24
sw/main.py
@ -5,6 +5,7 @@ import pandas as pd
|
|||||||
|
|
||||||
from decoders import proximal
|
from decoders import proximal
|
||||||
from decoders import naive_soft_decision
|
from decoders import naive_soft_decision
|
||||||
|
from decoders import channel
|
||||||
from decoders import utility
|
from decoders import utility
|
||||||
|
|
||||||
|
|
||||||
@ -20,20 +21,27 @@ def main():
|
|||||||
[0, 1, 1, 0, 0, 1, 1],
|
[0, 1, 1, 0, 0, 1, 1],
|
||||||
[0, 0, 0, 1, 1, 1, 1]])
|
[0, 0, 0, 1, 1, 1, 1]])
|
||||||
|
|
||||||
|
encoder = channel.Encoder(G)
|
||||||
|
|
||||||
|
proximal_decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
|
||||||
|
soft_decision_decoder = naive_soft_decision.SoftDecisionDecoder(G, H)
|
||||||
|
|
||||||
# Test decoder
|
# Test decoder
|
||||||
|
|
||||||
d = np.array([0, 0, 0, 0])
|
k, n = G.shape
|
||||||
c = np.dot(G.transpose(), d) % 2
|
d = np.zeros(k) # All-zeros assumption
|
||||||
|
|
||||||
print(f"Simulating with c = {c}")
|
SNRs_sd, BERs_sd = utility.test_decoder(encoder=encoder,
|
||||||
|
decoder=soft_decision_decoder,
|
||||||
|
d=d,
|
||||||
|
SNRs=np.linspace(1, 7, 9),
|
||||||
|
target_bit_errors=500)
|
||||||
|
|
||||||
# decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
|
data = pd.DataFrame({"SNR": SNRs_sd, "BER_sd": BERs_sd})
|
||||||
decoder = naive_soft_decision.SoftDecisionDecoder(G, H)
|
|
||||||
SNRs, BERs = utility.test_decoder(decoder, d, c, SNRs=np.linspace(1, 7, 9), target_bit_errors=500, N_max=10000)
|
|
||||||
|
|
||||||
data = pd.DataFrame({"SNR": SNRs, "BER": BERs})
|
# Plot results
|
||||||
|
|
||||||
ax = sns.lineplot(data=data, x="SNR", y="BER")
|
ax = sns.lineplot(data=data, x="SNR", y="BER_sd")
|
||||||
ax.set(yscale="log")
|
ax.set(yscale="log")
|
||||||
ax.set_yticks([10e-5, 10e-4, 10e-3, 10e-2, 10e-1, 10e0])
|
ax.set_yticks([10e-5, 10e-4, 10e-3, 10e-2, 10e-1, 10e0])
|
||||||
# ax.set_ylim([10e-6, 10e0])
|
# ax.set_ylim([10e-6, 10e0])
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user