Implemented projection; Added TODOs and fixed docstrings
This commit is contained in:
parent
01bc41b8c5
commit
2c16e2c2a3
@ -6,24 +6,30 @@ class ProximalDecoder:
|
|||||||
"""Class implementing the Proximal Decoding algorithm. See "Proximal Decoding for LDPC Codes" by Tadashi
|
"""Class implementing the Proximal Decoding algorithm. See "Proximal Decoding for LDPC Codes" by Tadashi
|
||||||
Wadayama, and Satoshi Takabe.
|
Wadayama, and Satoshi Takabe.
|
||||||
"""
|
"""
|
||||||
def __init__(self, H: np.array, K: int = 10, step_size: float = 0.01, gamma: float = 0.05):
|
# TODO: How large should K be?
|
||||||
|
# TODO: How large should eta be?
|
||||||
|
# TODO: How large should step_size be?
|
||||||
|
def __init__(self, H: np.array, K: int = 100, step_size: float = 0.5, gamma: float = 0.05, eta: float = 1.1):
|
||||||
"""Construct a new ProximalDecoder Object.
|
"""Construct a new ProximalDecoder Object.
|
||||||
|
|
||||||
:param H: Parity Check Matrix
|
:param H: Parity Check Matrix
|
||||||
:param K: Max number of iterations to perform when decoding
|
:param K: Max number of iterations to perform when decoding
|
||||||
:param step_size: Step size for the gradient descent process
|
:param step_size: Step size for the gradient descent process
|
||||||
:param gamma: Positive constant. Arises in the approximation of the prior PDF
|
:param gamma: Positive constant. Arises in the approximation of the prior PDF
|
||||||
|
:param eta: Positive constant slightly larger than one. See 3.2, p. 3
|
||||||
"""
|
"""
|
||||||
self._H = H
|
self._H = H
|
||||||
self._K = K
|
self._K = K
|
||||||
self._step_size = step_size
|
self._step_size = step_size
|
||||||
self._gamma = gamma
|
self._gamma = gamma
|
||||||
|
self._eta = eta
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _L_awgn(s: np.array, y: np.array) -> np.array:
|
def _L_awgn(s: np.array, y: np.array) -> np.array:
|
||||||
"""Variation of the negative log-likelihood for the special case of AWGN noise. See 4.1, p. 4."""
|
"""Variation of the negative log-likelihood for the special case of AWGN noise. See 4.1, p. 4."""
|
||||||
return s - y
|
return s - y
|
||||||
|
|
||||||
|
# TODO: Is this correct?
|
||||||
def _grad_h(self, x: np.array) -> np.array:
|
def _grad_h(self, x: np.array) -> np.array:
|
||||||
"""Gradient of the code-constraint polynomial. See 2.3, p. 2."""
|
"""Gradient of the code-constraint polynomial. See 2.3, p. 2."""
|
||||||
# Calculate first term
|
# Calculate first term
|
||||||
@ -56,6 +62,16 @@ class ProximalDecoder:
|
|||||||
|
|
||||||
return np.array(result)
|
return np.array(result)
|
||||||
|
|
||||||
|
# TODO: Is this correct?
|
||||||
|
def _projection(self, x):
|
||||||
|
"""Project a vector onto [-eta, eta]^n in order to avoid numerical instability.
|
||||||
|
Detailed in 3.2, p. 3 (Equation (15)).
|
||||||
|
|
||||||
|
:param x:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
return np.clip(x, -self._eta, self._eta)
|
||||||
|
|
||||||
def _check_parity(self, y_hat: np.array) -> bool:
|
def _check_parity(self, y_hat: np.array) -> bool:
|
||||||
"""Perform a parity check for a given codeword.
|
"""Perform a parity check for a given codeword.
|
||||||
|
|
||||||
@ -77,7 +93,10 @@ class ProximalDecoder:
|
|||||||
x_hat = 0
|
x_hat = 0
|
||||||
for k in range(self._K):
|
for k in range(self._K):
|
||||||
r = s - self._step_size * self._L_awgn(s, y)
|
r = s - self._step_size * self._L_awgn(s, y)
|
||||||
|
|
||||||
s = r - self._gamma * self._grad_h(r)
|
s = r - self._gamma * self._grad_h(r)
|
||||||
|
s = self._projection(s) # Equation (15)
|
||||||
|
|
||||||
x_hat = (np.sign(s) == 1) * 1
|
x_hat = (np.sign(s) == 1) * 1
|
||||||
|
|
||||||
if self._check_parity(x_hat):
|
if self._check_parity(x_hat):
|
||||||
|
|||||||
@ -7,7 +7,7 @@ from tqdm import tqdm
|
|||||||
|
|
||||||
|
|
||||||
def _get_noise_amp_from_SNR(SNR: float, signal_amp: float = 1) -> float:
|
def _get_noise_amp_from_SNR(SNR: float, signal_amp: float = 1) -> float:
|
||||||
"""Calculate the amplitude of the noise from an SNR and the signal amplitude
|
"""Calculate the amplitude of the noise from an SNR and the signal amplitude.
|
||||||
|
|
||||||
:param SNR: Signal-to-Noise-Ratio in dB
|
:param SNR: Signal-to-Noise-Ratio in dB
|
||||||
:param signal_amp: Signal Amplitude (linear)
|
:param signal_amp: Signal Amplitude (linear)
|
||||||
@ -49,7 +49,7 @@ def test_decoder(decoder: typing.Any,
|
|||||||
-> typing.Tuple[np.array, np.array]:
|
-> typing.Tuple[np.array, np.array]:
|
||||||
"""Calculate the Bit Error Rate (BER) for a given decoder for a number of SNRs.
|
"""Calculate the Bit Error Rate (BER) for a given decoder for a number of SNRs.
|
||||||
|
|
||||||
This function prints it's progress to stdout
|
This function prints its progress to stdout.
|
||||||
|
|
||||||
:param decoder: Instance of the decoder to be tested
|
:param decoder: Instance of the decoder to be tested
|
||||||
:param c: Codeword whose transmission is to be simulated
|
:param c: Codeword whose transmission is to be simulated
|
||||||
@ -69,6 +69,8 @@ def test_decoder(decoder: typing.Any,
|
|||||||
leave=False,
|
leave=False,
|
||||||
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
|
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
|
||||||
|
|
||||||
|
# TODO: Is this a valid simulation? Can we just add AWGN to the codeword, ignoring and modulation and (
|
||||||
|
# e.g. matched) filtering?
|
||||||
y = add_awgn(c, SNR)
|
y = add_awgn(c, SNR)
|
||||||
y_hat = decoder.decode(y)
|
y_hat = decoder.decode(y)
|
||||||
|
|
||||||
|
|||||||
@ -26,8 +26,8 @@ def main():
|
|||||||
|
|
||||||
print(f"Simulating with c = {c}")
|
print(f"Simulating with c = {c}")
|
||||||
|
|
||||||
decoder = proximal.ProximalDecoder(H, K=100)
|
decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
|
||||||
SNRs, BERs = utility.test_decoder(decoder, c, N=100)
|
SNRs, BERs = utility.test_decoder(decoder, c, SNRs=[1, 3, 20], N=1000)
|
||||||
|
|
||||||
data = pd.DataFrame({"SNR": SNRs, "BER": BERs})
|
data = pd.DataFrame({"SNR": SNRs, "BER": BERs})
|
||||||
|
|
||||||
|
|||||||
@ -35,7 +35,7 @@ class CheckParityTestCase(unittest.TestCase):
|
|||||||
|
|
||||||
|
|
||||||
class GradientTestCase(unittest.TestCase):
|
class GradientTestCase(unittest.TestCase):
|
||||||
"""Test case for the calculation of the gradient of the code-constraint-polynomial"""
|
"""Test case for the calculation of the gradient of the code-constraint-polynomial."""
|
||||||
def test_grad_h(self):
|
def test_grad_h(self):
|
||||||
H = np.array([[1, 0, 0],
|
H = np.array([[1, 0, 0],
|
||||||
[0, 1, 0]])
|
[0, 1, 0]])
|
||||||
|
|||||||
@ -21,7 +21,7 @@ class CountBitErrorsTestCase(unittest.TestCase):
|
|||||||
|
|
||||||
|
|
||||||
class NoiseAmpFromSNRTestCase(unittest.TestCase):
|
class NoiseAmpFromSNRTestCase(unittest.TestCase):
|
||||||
"""Test case for noise amplitude calculation"""
|
"""Test case for noise amplitude calculation."""
|
||||||
def test_get_noise_amp_from_SNR(self):
|
def test_get_noise_amp_from_SNR(self):
|
||||||
SNR1 = 0
|
SNR1 = 0
|
||||||
SNR2 = 6
|
SNR2 = 6
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user