Implemented projection; Added TODOs and fixed docstrings

This commit is contained in:
Andreas Tsouchlos 2022-11-04 22:05:16 +01:00
parent 01bc41b8c5
commit 2c16e2c2a3
5 changed files with 28 additions and 7 deletions

View File

@ -6,24 +6,30 @@ class ProximalDecoder:
"""Class implementing the Proximal Decoding algorithm. See "Proximal Decoding for LDPC Codes" by Tadashi
Wadayama, and Satoshi Takabe.
"""
def __init__(self, H: np.array, K: int = 10, step_size: float = 0.01, gamma: float = 0.05):
# TODO: How large should K be?
# TODO: How large should eta be?
# TODO: How large should step_size be?
def __init__(self, H: np.array, K: int = 100, step_size: float = 0.5, gamma: float = 0.05, eta: float = 1.1):
"""Construct a new ProximalDecoder Object.
:param H: Parity Check Matrix
:param K: Max number of iterations to perform when decoding
:param step_size: Step size for the gradient descent process
:param gamma: Positive constant. Arises in the approximation of the prior PDF
:param eta: Positive constant slightly larger than one. See 3.2, p. 3
"""
self._H = H
self._K = K
self._step_size = step_size
self._gamma = gamma
self._eta = eta
@staticmethod
def _L_awgn(s: np.array, y: np.array) -> np.array:
"""Variation of the negative log-likelihood for the special case of AWGN noise. See 4.1, p. 4."""
return s - y
# TODO: Is this correct?
def _grad_h(self, x: np.array) -> np.array:
"""Gradient of the code-constraint polynomial. See 2.3, p. 2."""
# Calculate first term
@ -56,6 +62,16 @@ class ProximalDecoder:
return np.array(result)
# TODO: Is this correct?
def _projection(self, x):
"""Project a vector onto [-eta, eta]^n in order to avoid numerical instability.
Detailed in 3.2, p. 3 (Equation (15)).
:param x:
:return:
"""
return np.clip(x, -self._eta, self._eta)
def _check_parity(self, y_hat: np.array) -> bool:
"""Perform a parity check for a given codeword.
@ -77,7 +93,10 @@ class ProximalDecoder:
x_hat = 0
for k in range(self._K):
r = s - self._step_size * self._L_awgn(s, y)
s = r - self._gamma * self._grad_h(r)
s = self._projection(s) # Equation (15)
x_hat = (np.sign(s) == 1) * 1
if self._check_parity(x_hat):

View File

@ -7,7 +7,7 @@ from tqdm import tqdm
def _get_noise_amp_from_SNR(SNR: float, signal_amp: float = 1) -> float:
"""Calculate the amplitude of the noise from an SNR and the signal amplitude
"""Calculate the amplitude of the noise from an SNR and the signal amplitude.
:param SNR: Signal-to-Noise-Ratio in dB
:param signal_amp: Signal Amplitude (linear)
@ -49,7 +49,7 @@ def test_decoder(decoder: typing.Any,
-> typing.Tuple[np.array, np.array]:
"""Calculate the Bit Error Rate (BER) for a given decoder for a number of SNRs.
This function prints it's progress to stdout
This function prints its progress to stdout.
:param decoder: Instance of the decoder to be tested
:param c: Codeword whose transmission is to be simulated
@ -69,6 +69,8 @@ def test_decoder(decoder: typing.Any,
leave=False,
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}"):
# TODO: Is this a valid simulation? Can we just add AWGN to the codeword, ignoring and modulation and (
# e.g. matched) filtering?
y = add_awgn(c, SNR)
y_hat = decoder.decode(y)

View File

@ -26,8 +26,8 @@ def main():
print(f"Simulating with c = {c}")
decoder = proximal.ProximalDecoder(H, K=100)
SNRs, BERs = utility.test_decoder(decoder, c, N=100)
decoder = proximal.ProximalDecoder(H, K=100, gamma=0.01)
SNRs, BERs = utility.test_decoder(decoder, c, SNRs=[1, 3, 20], N=1000)
data = pd.DataFrame({"SNR": SNRs, "BER": BERs})

View File

@ -35,7 +35,7 @@ class CheckParityTestCase(unittest.TestCase):
class GradientTestCase(unittest.TestCase):
"""Test case for the calculation of the gradient of the code-constraint-polynomial"""
"""Test case for the calculation of the gradient of the code-constraint-polynomial."""
def test_grad_h(self):
H = np.array([[1, 0, 0],
[0, 1, 0]])

View File

@ -21,7 +21,7 @@ class CountBitErrorsTestCase(unittest.TestCase):
class NoiseAmpFromSNRTestCase(unittest.TestCase):
"""Test case for noise amplitude calculation"""
"""Test case for noise amplitude calculation."""
def test_get_noise_amp_from_SNR(self):
SNR1 = 0
SNR2 = 6