Rotated cube; continued writing lp decoding
This commit is contained in:
parent
033cdb5197
commit
1a3e9ffbe4
@ -90,36 +90,58 @@ which minimizes the objective function $f$ (as shown in figure \ref{fig:dec:spac
|
||||
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
|
||||
draw, circle, inner sep=0pt, minimum size=4pt]
|
||||
|
||||
\tdplotsetmaincoords{60}{245}
|
||||
\tdplotsetmaincoords{60}{25}
|
||||
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
|
||||
% Cube
|
||||
|
||||
\draw[dashed] (0, 0, 0) -- (2, 0, 0);
|
||||
\draw[dashed] (2, 0, 0) -- (2, 0, 2);
|
||||
\draw[] (2, 0, 2) -- (0, 0, 2);
|
||||
\draw[] (0, 0, 2) -- (0, 0, 0);
|
||||
\coordinate (p000) at (0, 0, 0);
|
||||
\coordinate (p001) at (0, 0, 2);
|
||||
\coordinate (p010) at (0, 2, 0);
|
||||
\coordinate (p011) at (0, 2, 2);
|
||||
\coordinate (p100) at (2, 0, 0);
|
||||
\coordinate (p101) at (2, 0, 2);
|
||||
\coordinate (p110) at (2, 2, 0);
|
||||
\coordinate (p111) at (2, 2, 2);
|
||||
|
||||
\draw[] (0, 2, 0) -- (2, 2, 0);
|
||||
\draw[] (2, 2, 0) -- (2, 2, 2);
|
||||
\draw[] (2, 2, 2) -- (0, 2, 2);
|
||||
\draw[] (0, 2, 2) -- (0, 2, 0);
|
||||
\draw[] (p000) -- (p100);
|
||||
\draw[] (p100) -- (p101);
|
||||
\draw[] (p101) -- (p001);
|
||||
\draw[] (p001) -- (p000);
|
||||
|
||||
\draw[] (0, 0, 0) -- (0, 2, 0);
|
||||
\draw[dashed] (2, 0, 0) -- (2, 2, 0);
|
||||
\draw[] (2, 0, 2) -- (2, 2, 2);
|
||||
\draw[] (0, 0, 2) -- (0, 2, 2);
|
||||
\draw[dashed] (p010) -- (p110);
|
||||
\draw[] (p110) -- (p111);
|
||||
\draw[] (p111) -- (p011);
|
||||
\draw[dashed] (p011) -- (p010);
|
||||
|
||||
\draw[dashed] (p000) -- (p010);
|
||||
\draw[] (p100) -- (p110);
|
||||
\draw[] (p101) -- (p111);
|
||||
\draw[] (p001) -- (p011);
|
||||
|
||||
% Polytope Vertices
|
||||
|
||||
\node[codeword] (c000) at (p000) {};
|
||||
\node[codeword] (c101) at (p101) {};
|
||||
\node[codeword] (c110) at (p110) {};
|
||||
\node[codeword] (c011) at (p011) {};
|
||||
|
||||
% Polytope Edges
|
||||
|
||||
% \draw[line width=1pt, color=KITblue] (c000) -- (c101);
|
||||
% \draw[line width=1pt, color=KITblue] (c000) -- (c110);
|
||||
% \draw[line width=1pt, color=KITblue] (c000) -- (c011);
|
||||
%
|
||||
% \draw[line width=1pt, color=KITblue] (c101) -- (c110);
|
||||
% \draw[line width=1pt, color=KITblue] (c101) -- (c011);
|
||||
%
|
||||
% \draw[line width=1pt, color=KITblue] (c011) -- (c110);
|
||||
|
||||
% Polytope Annotations
|
||||
|
||||
\node[codeword] (c000) at (0, 0, 0) {};% {$\left( 0, 0, 0 \right) $};
|
||||
\node[codeword] (c101) at (2, 0, 2) {};% {$\left( 1, 0, 1 \right) $};
|
||||
\node[codeword] (c110) at (2, 2, 0) {};% {$\left( 1, 1, 0 \right) $};
|
||||
\node[codeword] (c011) at (0, 2, 2) {};% {$\left( 0, 1, 1 \right) $};
|
||||
|
||||
\node[color=KITblue, right=0cm of c000] {$\left( 0, 0, 0 \right) $};
|
||||
\node[color=KITblue, above=0cm of c101] {$\left( 1, 0, 1 \right) $};
|
||||
\node[color=KITblue, left=0cm of c110] {$\left( 1, 1, 0 \right) $};
|
||||
\node[color=KITblue, left=-0.1cm of c011] {$\left( 0, 1, 1 \right) $};
|
||||
\node[color=KITblue, below=0cm of c000] {$\left( 0, 0, 0 \right) $};
|
||||
\node[color=KITblue, right=0.17cm of c101] {$\left( 1, 0, 1 \right) $};
|
||||
\node[color=KITblue, right=0cm of c110] {$\left( 1, 1, 0 \right) $};
|
||||
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
|
||||
|
||||
% x
|
||||
|
||||
@ -146,15 +168,16 @@ which minimizes the objective function $f$ (as shown in figure \ref{fig:dec:spac
|
||||
\cite{feldman_paper}. They reframe the decoding problem as an
|
||||
\textit{integer linear program} and subsequently present two relaxations into
|
||||
\textit{linear programs}, one representing a formulation of exact \ac{LP}
|
||||
decoding and an approximation with a more manageable representation.
|
||||
decoding and one, which is an approximation with a more manageable
|
||||
representation.
|
||||
To solve the resulting linear program, various optimization methods can be
|
||||
used.
|
||||
The one examined in this work is \ac{ADMM}.
|
||||
used;
|
||||
the one examined in this work is \ac{ADMM}.
|
||||
\todo{Why chose ADMM?}
|
||||
|
||||
Feldman at al. begin by looking at the \ac{ML} decoding problem%
|
||||
\footnote{They assume that all codewords are equally likely to be transmitted,
|
||||
making the \ac{ML} and \ac{MAP} decoding problems essentially equivalent.}%
|
||||
making the \ac{ML} and \ac{MAP} decoding problems equivalent.}%
|
||||
%
|
||||
\begin{align*}
|
||||
\hat{\boldsymbol{c}} = \argmax_{\boldsymbol{c} \in \mathcal{C}}
|
||||
@ -193,8 +216,8 @@ decoding is the following:%
|
||||
|
||||
As solving integer linear programs is generally NP-hard, this decoding problem
|
||||
has to be approximated by one with looser constraints.
|
||||
A technique called \textit{relaxation} is applied,
|
||||
essentially modifying the constraints in order to broaden the considered
|
||||
A technique called \textit{relaxation} is applied:
|
||||
modifying the constraints in order to broaden the considered
|
||||
domain (e.g. by lifting the integer requirement).
|
||||
First, the authors present an equivalent \ac{LP} formulation of exact \ac{ML}
|
||||
decoding, redefining the constraints in terms of the \text{codeword polytope}
|
||||
@ -207,11 +230,29 @@ decoding, redefining the constraints in terms of the \text{codeword polytope}
|
||||
,\end{align*} %
|
||||
%
|
||||
which represents the \textit{convex hull} of all possible codewords,
|
||||
i.e. the set of convex linear combinations of all codewords
|
||||
(visualized in figure \ref{fig:dec:poly}).
|
||||
However, since the number of constraints needed to characterize this codeword
|
||||
i.e. the set of convex linear combinations of all codewords.
|
||||
However, since the number of constraints needed to characterize the codeword
|
||||
polytope is exponential in the code length, this formulation is relaxed futher.
|
||||
By observing that each check-node defines its own local single parity-check
|
||||
code, and thus its own \textit{local codeword polytope},
|
||||
the \textit{relaxed codeword polytope} $Q$ is defined as the intersection of all
|
||||
local codeword polytopes.
|
||||
This consideration leads to the following constraints:%
|
||||
%
|
||||
\begin{align*}
|
||||
\ldots
|
||||
.\end{align*}
|
||||
|
||||
In figure \ref{fig:dec:poly} the two relaxations are compared based on an
|
||||
example code.
|
||||
Figure \ref{fig:dec:poly:exact} shows the codeword polytope
|
||||
$\text{poly}\left( \mathcal{C} \right) $, i.e. the constraints for the
|
||||
equivalent linear program to exact \ac{ML} decoding - only valid codewords are
|
||||
feasible solutions.
|
||||
Figures \ref{fig:dec:poly:local1} and \ref{fig:dec:poly:local2} show the local
|
||||
codeword polytopes of each check node.
|
||||
Their intersection, the relaxed codeword polytope $Q$, is shown in figure
|
||||
\ref{fig:dec:poly:relaxed}.
|
||||
|
||||
%
|
||||
% Codeword polytope visualization figure
|
||||
@ -251,7 +292,7 @@ polytope is exponential in the code length, this formulation is relaxed futher.
|
||||
\end{align*}
|
||||
|
||||
\caption{Definition of the visualized code}
|
||||
\label{fig:}
|
||||
\label{fig:dec:poly:code_def}
|
||||
\end{subfigure} \\[7em]
|
||||
\begin{subfigure}{\textwidth}
|
||||
\centering
|
||||
@ -302,8 +343,8 @@ polytope is exponential in the code length, this formulation is relaxed futher.
|
||||
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Codeword polytope}
|
||||
\label{fig:}
|
||||
\caption{Codeword polytope $\text{poly}\left( \mathcal{C} \right) $}
|
||||
\label{fig:dec:poly:exact}
|
||||
\end{subfigure}
|
||||
\end{subfigure} \hfill%
|
||||
%
|
||||
@ -374,9 +415,9 @@ polytope is exponential in the code length, this formulation is relaxed futher.
|
||||
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Local codeword polytope of parity-check
|
||||
$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$}
|
||||
\label{fig:}
|
||||
\caption{Local codeword polytope of check node\\ $j=1$
|
||||
$\left( c_1 + c_2 + c_3 = 0 \right)$}
|
||||
\label{fig:dec:poly:local1}
|
||||
\end{subfigure} \\[1em]
|
||||
\begin{subfigure}{\textwidth}
|
||||
\centering
|
||||
@ -434,8 +475,9 @@ polytope is exponential in the code length, this formulation is relaxed futher.
|
||||
\node[color=KITblue, above=0cm of c111] {$\left( 1, 1, 1 \right) $};
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Local codeword polytope of parity-check
|
||||
$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$}
|
||||
\caption{Local codeword polytope of check node\\ $j=2$
|
||||
$\left( c_2 + c_3 = 0\right)$}
|
||||
\label{fig:dec:poly:local2}
|
||||
\end{subfigure}\\[1em]
|
||||
\begin{subfigure}{\textwidth}
|
||||
\centering
|
||||
@ -493,8 +535,8 @@ polytope is exponential in the code length, this formulation is relaxed futher.
|
||||
{$\left( 1, \frac{1}{2}, \frac{1}{2} \right) $};
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Relaxed codeword polytope}
|
||||
\label{fig:}
|
||||
\caption{Relaxed codeword polytope $Q$}
|
||||
\label{fig:dec:poly:relaxed}
|
||||
\end{subfigure}
|
||||
\end{subfigure}
|
||||
|
||||
@ -503,10 +545,17 @@ polytope is exponential in the code length, this formulation is relaxed futher.
|
||||
\label{fig:dec:poly}
|
||||
\end{figure}
|
||||
|
||||
\noindent%
|
||||
It can be seen, that the relaxed codeword polytope $Q$ introduces fractional
|
||||
vertices;
|
||||
these represent erroneous non-codeword solutions to the linear program and
|
||||
correspond to the so-called \textit{pseudocodewords} introduced in
|
||||
\cite{feldman_paper}.
|
||||
However, since for \ac{LDPC} codes $Q$ scales linearly with $n$, it is a lot
|
||||
more tractable for practical applications.
|
||||
|
||||
\begin{itemize}
|
||||
\item Equivalent \ac{ML} optimization problem
|
||||
\item \Ac{LP} relaxation
|
||||
\item \Ac{ADMM} as a solver
|
||||
\item TODO: \Ac{ADMM} as a solver
|
||||
\end{itemize}
|
||||
|
||||
|
||||
@ -595,7 +644,7 @@ $f\left( \boldsymbol{x} \right)$ to be minimized is%
|
||||
.\end{align}
|
||||
|
||||
For the solution of the approximalte \ac{MAP} decoding problem, the two parts
|
||||
of equation \ref{eq:prox:approx_map_problem} are considered separately:
|
||||
of \ref{eq:prox:objective_function} are considered separately:
|
||||
the minimization of the objective function occurs in an alternating
|
||||
manner, switching between the minimization of the negative log-likelihood
|
||||
$L\left( \boldsymbol{y} \mid \boldsymbol{x} \right) $ and the scaled
|
||||
@ -637,7 +686,7 @@ theoretically becomes better
|
||||
with larger $\gamma$, the constraint that $\gamma$ be small is important,
|
||||
as it keeps the effect of $h\left( \boldsymbol{x} \right) $ on the landscape
|
||||
of the objective function small.
|
||||
Otherwise, unwanted stationary points, including local minima are introduced.
|
||||
Otherwise, unwanted stationary points, including local minima, are introduced.
|
||||
The authors say that in practice, the value of $\gamma$ should be adjusted
|
||||
according to the decoding performance.
|
||||
The iterative decoding process \todo{projection with $\eta$} resulting from this considreation is shown in
|
||||
@ -687,7 +736,7 @@ is%
|
||||
%
|
||||
Thus, the gradient of the negative log-likelihood becomes%
|
||||
\footnote{For the minimization, constants can be disregarded. For this reason,
|
||||
it suffices to consider only the proportionality instead of the equality}%
|
||||
it suffices to consider only the proportionality instead of the equality.}%
|
||||
%
|
||||
\begin{align*}
|
||||
\nabla L \left( \boldsymbol{y} \mid \boldsymbol{x} \right)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user