Updated measured performance; Fixed H matrix indexing; Fixed graph ticks

This commit is contained in:
Andreas Tsouchlos 2023-01-23 16:06:23 +01:00
parent 356e056a92
commit 0ceab1344f
4 changed files with 21 additions and 11 deletions

View File

@ -15,6 +15,7 @@
\usepackage{listings}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage[binary-units]{siunitx}
%\geometry{textheight=17.07cm,textwidth=6.9cm}
%\usepackage{pgfpages}
%\pgfpagesuselayout{resize to}[physical paper height=17.07cm,

View File

@ -19,7 +19,7 @@
_{\text{Parity constraint}},
\hspace{5mm}\mathcal{A}\left( i \right) \equiv \left\{
j | j\in \mathcal{J},
\boldsymbol{H}_{i,j} = 1
\boldsymbol{H}_{j,i} = 1
\right\},
i \in \mathcal{I}
\end{align*}
@ -82,7 +82,10 @@
\begin{frame}[t, fragile]
\frametitle{Proximal Decoding: Algorithm}
\begin{algorithm}[caption={}, label={}]
\begin{itemize}
\item Resulting terative decoding algorithm:
\vspace{2mm}
\begin{algorithm}[caption={}, label={}]
$\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$
for $k=0$ to $K-1$ do
$\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $
@ -92,7 +95,8 @@ for $k=0$ to $K-1$ do
If $\boldsymbol{\hat{x}}$ passes the parity check condition, break the loop.
end for
Output $\boldsymbol{\hat{x}}$
\end{algorithm}
\end{algorithm}
\end{itemize}
\end{frame}

View File

@ -25,7 +25,7 @@
legend style={at={(0.05,0.05)},anchor=south west},
width=11.5cm,
height=8cm,
ytick={0, 10e-1, 10e-2, 10e-3, 10e-4},
ytick={0, 1e-1, 1e-2, 1e-3, 1e-4},
xtick={1, 2, 3, 4, 5},
ymax=1.2, ymin=0.8e-4,
xmin=0.9, xmax=5.6,
@ -59,8 +59,13 @@
\end{figure}
\item Performance: $2800 \text{ transm.} / s$ - Intel Core i7-7700HQ @ 2.80GHz\\
($\sim 10s$ for the shown plot)
\item $\mathcal{O}\left(n \right) $ time complexity - same as BP;
Only multiplication and addition necessary \cite{proximal_paper}
\item Measured Performance: Between $\SI{0.5}{\mega\bit / \second}$ and
$\SI{2.5}{\mega\bit / \second}$ - Intel Core i7-7700HQ @ 2.80GHz\\
($\sim \SI{10}{\second}$ for the shown plot)
\todo{Use the shown bitrate, or half?
($n_{iterations} \cdot n$ or $n_{iterations} \cdot k$?)}
\end{itemize}
\end{frame}

View File

@ -14,7 +14,9 @@
\item The standard message-passing algorithms used for decoding [LDPC and turbo codes]
are often difficult to analyze. \cite{feldman_thesis}
\item The iterative messagepassing algorithms preffered in practice do not guarantee
optimality and may fail to decode correctly when the graph contains cycles \cite{ldpc_conv}
optimality and may fail to decode correctly when the graph contains cycles
\cite{ldpc_conv}
\end{itemize}
\end{frame}
@ -62,7 +64,7 @@
\left(0,\frac{1}{2}\left(\frac{k}{n}\frac{E_b}{N_0}\right)^{-1}\right),
\hspace{2mm} \boldsymbol{y}, \boldsymbol{n} \in \mathbb{R}^n
\end{align*}
\item All zeros assumption:
\item All-zeros assumption:
\begin{align*}
\boldsymbol{c} = 0
\end{align*}
@ -172,12 +174,10 @@
\begin{align*}
N\left( j \right) \equiv \left\{
i | i\in \mathcal{I},
\boldsymbol{H}_{i,j} = 1
\boldsymbol{H}_{j,i} = 1
\right\},
j \in \mathcal{J}
\end{align*}
\todo{Is this correct? Shouldn't i and j be switched around?}
\item ``Illegal configurations''
\begin{align*}
S \subseteq N\left( j \right), \left| S \right| \text{odd}
\end{align*}