Updated measured performance; Fixed H matrix indexing; Fixed graph ticks

This commit is contained in:
Andreas Tsouchlos 2023-01-23 16:06:23 +01:00
parent 356e056a92
commit 0ceab1344f
4 changed files with 21 additions and 11 deletions

View File

@ -15,6 +15,7 @@
\usepackage{listings} \usepackage{listings}
\usepackage{graphicx} \usepackage{graphicx}
\usepackage{xcolor} \usepackage{xcolor}
\usepackage[binary-units]{siunitx}
%\geometry{textheight=17.07cm,textwidth=6.9cm} %\geometry{textheight=17.07cm,textwidth=6.9cm}
%\usepackage{pgfpages} %\usepackage{pgfpages}
%\pgfpagesuselayout{resize to}[physical paper height=17.07cm, %\pgfpagesuselayout{resize to}[physical paper height=17.07cm,

View File

@ -19,7 +19,7 @@
_{\text{Parity constraint}}, _{\text{Parity constraint}},
\hspace{5mm}\mathcal{A}\left( i \right) \equiv \left\{ \hspace{5mm}\mathcal{A}\left( i \right) \equiv \left\{
j | j\in \mathcal{J}, j | j\in \mathcal{J},
\boldsymbol{H}_{i,j} = 1 \boldsymbol{H}_{j,i} = 1
\right\}, \right\},
i \in \mathcal{I} i \in \mathcal{I}
\end{align*} \end{align*}
@ -82,7 +82,10 @@
\begin{frame}[t, fragile] \begin{frame}[t, fragile]
\frametitle{Proximal Decoding: Algorithm} \frametitle{Proximal Decoding: Algorithm}
\begin{algorithm}[caption={}, label={}] \begin{itemize}
\item Resulting terative decoding algorithm:
\vspace{2mm}
\begin{algorithm}[caption={}, label={}]
$\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$ $\boldsymbol{s}^{\left( 0 \right)} = \boldsymbol{0}$
for $k=0$ to $K-1$ do for $k=0$ to $K-1$ do
$\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $ $\boldsymbol{r}^{\left( k+1 \right)} = \boldsymbol{s}^{(k)} - \omega \nabla L \left( \boldsymbol{s}^{(k)}; \boldsymbol{y} \right) $
@ -92,7 +95,8 @@ for $k=0$ to $K-1$ do
If $\boldsymbol{\hat{x}}$ passes the parity check condition, break the loop. If $\boldsymbol{\hat{x}}$ passes the parity check condition, break the loop.
end for end for
Output $\boldsymbol{\hat{x}}$ Output $\boldsymbol{\hat{x}}$
\end{algorithm} \end{algorithm}
\end{itemize}
\end{frame} \end{frame}

View File

@ -25,7 +25,7 @@
legend style={at={(0.05,0.05)},anchor=south west}, legend style={at={(0.05,0.05)},anchor=south west},
width=11.5cm, width=11.5cm,
height=8cm, height=8cm,
ytick={0, 10e-1, 10e-2, 10e-3, 10e-4}, ytick={0, 1e-1, 1e-2, 1e-3, 1e-4},
xtick={1, 2, 3, 4, 5}, xtick={1, 2, 3, 4, 5},
ymax=1.2, ymin=0.8e-4, ymax=1.2, ymin=0.8e-4,
xmin=0.9, xmax=5.6, xmin=0.9, xmax=5.6,
@ -59,8 +59,13 @@
\end{figure} \end{figure}
\item Performance: $2800 \text{ transm.} / s$ - Intel Core i7-7700HQ @ 2.80GHz\\ \item $\mathcal{O}\left(n \right) $ time complexity - same as BP;
($\sim 10s$ for the shown plot) Only multiplication and addition necessary \cite{proximal_paper}
\item Measured Performance: Between $\SI{0.5}{\mega\bit / \second}$ and
$\SI{2.5}{\mega\bit / \second}$ - Intel Core i7-7700HQ @ 2.80GHz\\
($\sim \SI{10}{\second}$ for the shown plot)
\todo{Use the shown bitrate, or half?
($n_{iterations} \cdot n$ or $n_{iterations} \cdot k$?)}
\end{itemize} \end{itemize}
\end{frame} \end{frame}

View File

@ -14,7 +14,9 @@
\item The standard message-passing algorithms used for decoding [LDPC and turbo codes] \item The standard message-passing algorithms used for decoding [LDPC and turbo codes]
are often difficult to analyze. \cite{feldman_thesis} are often difficult to analyze. \cite{feldman_thesis}
\item The iterative messagepassing algorithms preffered in practice do not guarantee \item The iterative messagepassing algorithms preffered in practice do not guarantee
optimality and may fail to decode correctly when the graph contains cycles \cite{ldpc_conv} optimality and may fail to decode correctly when the graph contains cycles
\cite{ldpc_conv}
\end{itemize} \end{itemize}
\end{frame} \end{frame}
@ -62,7 +64,7 @@
\left(0,\frac{1}{2}\left(\frac{k}{n}\frac{E_b}{N_0}\right)^{-1}\right), \left(0,\frac{1}{2}\left(\frac{k}{n}\frac{E_b}{N_0}\right)^{-1}\right),
\hspace{2mm} \boldsymbol{y}, \boldsymbol{n} \in \mathbb{R}^n \hspace{2mm} \boldsymbol{y}, \boldsymbol{n} \in \mathbb{R}^n
\end{align*} \end{align*}
\item All zeros assumption: \item All-zeros assumption:
\begin{align*} \begin{align*}
\boldsymbol{c} = 0 \boldsymbol{c} = 0
\end{align*} \end{align*}
@ -172,12 +174,10 @@
\begin{align*} \begin{align*}
N\left( j \right) \equiv \left\{ N\left( j \right) \equiv \left\{
i | i\in \mathcal{I}, i | i\in \mathcal{I},
\boldsymbol{H}_{i,j} = 1 \boldsymbol{H}_{j,i} = 1
\right\}, \right\},
j \in \mathcal{J} j \in \mathcal{J}
\end{align*} \end{align*}
\todo{Is this correct? Shouldn't i and j be switched around?}
\item ``Illegal configurations''
\begin{align*} \begin{align*}
S \subseteq N\left( j \right), \left| S \right| \text{odd} S \subseteq N\left( j \right), \left| S \right| \text{odd}
\end{align*} \end{align*}