Added simulate_2d_BER.py

This commit is contained in:
Andreas Tsouchlos 2022-12-05 15:00:27 +01:00
parent a32d5cb2c9
commit 05f153916f

View File

@ -1,3 +1,5 @@
import typing
import numpy as np
import pandas as pd
import seaborn as sns
@ -5,11 +7,12 @@ import matplotlib.pyplot as plt
import signal
from timeit import default_timer
from tqdm import tqdm
from dataclasses import dataclass
from types import MappingProxyType
from utility import codes, noise, misc
from utility.simulation.simulators import GenericMultithreadedSimulator
# from cpp_modules.cpp_decoders import ProximalDecoder
from cpp_modules.cpp_decoders import ProximalDecoder_204_102 as ProximalDecoder
@ -18,9 +21,18 @@ def count_bit_errors(d: np.array, d_hat: np.array) -> int:
def task_func(params):
"""Function called by the GenericMultithreadedSimulator instance.
Calculate the BER, FER, and DFR for a given SNR and gamma.
"""
signal.signal(signal.SIGINT, signal.SIG_IGN)
decoder, max_iterations, SNR, n, k = params
decoder = params["decoder"]
max_iterations = params["max_iterations"]
SNR = params["SNR"]
n = params["n"]
k = params["k"]
c = np.zeros(n)
x_bpsk = c + 1
@ -44,14 +56,15 @@ def task_func(params):
if k_max == -1:
dec_fails += 1
if total_frame_errors > 500:
if total_frame_errors > 100:
break
BER = total_bit_errors / (num_iterations * n)
FER = total_frame_errors / num_iterations
DFR = dec_fails / (num_iterations + dec_fails)
return BER, FER, DFR, num_iterations
return {"BER": BER, "FER": FER, "DFR": DFR,
"num_iterations": num_iterations}
def simulate(H_file, SNRs, max_iterations, omega, K, gammas):
@ -65,62 +78,45 @@ def simulate(H_file, SNRs, max_iterations, omega, K, gammas):
# Define params different for each task
params = {}
task_params = []
for i, SNR in enumerate(SNRs):
for j, gamma in enumerate(gammas):
decoder = ProximalDecoder(H=H.astype('int32'), K=K, omega=omega,
gamma=gamma)
params[f"{i}_{j}"] = (decoder, max_iterations, SNR, n, k)
task_params.append(
{"decoder": decoder, "max_iterations": max_iterations,
"SNR": SNR, "gamma": gamma, "n": n, "k": k})
# Set up simulation
sim.task_params = params
sim.task_params = task_params
sim.task_func = task_func
sim.start_or_continue()
return sim.get_current_results()
def reformat_data(results, SNRs, gammas):
data = {"BER": np.zeros(3 * 10), "FER": np.zeros(3 * 10),
"DFR": np.zeros(3 * 10), "gamma": np.zeros(3 * 10),
"SNR": np.zeros(3 * 10), "num_iter": np.zeros(3 * 10)}
for i, (key, (BER, FER, DFR, num_iter)) in enumerate(results.items()):
i_SNR, i_gamma = key.split('_')
data["BER"][i] = BER
data["FER"][i] = FER
data["DFR"][i] = DFR
data["num_iter"][i] = num_iter
data["SNR"][i] = SNRs[int(i_SNR)]
data["gamma"][i] = gammas[int(i_gamma)]
print(pd.DataFrame(data))
return pd.DataFrame(data)
return sim.current_results
def main():
# Set up simulation params
sim_name = "BER_FER_DFR"
sim_name = "2d_BER_FER_DFR"
# H_file = "BCH_7_4.alist"
# H_file = "BCH_31_11.alist"
# H_file = "BCH_31_26.alist"
# H_file = "96.3.965.alist"
H_file = "204.33.486.alist"
# H_file = "204.33.484.alist"
# H_file = "204.55.187.alist"
# H_file = "408.33.844.alist"
# H_file = "BCH_7_4.alist"
# H_file = "BCH_31_11.alist"
# H_file = "BCH_31_26.alist"
SNRs = np.arange(1, 6, 0.5)
SNRs = np.arange(1, 6, 0.5)
max_iterations = 20000
# omega = 0.005
# K = 60
omega = 0.05
K = 60
gammas = [0.15, 0.01, 0.05]
K = 100
gammas = np.arange(0.0, 0.17, 0.01)
# Run simulation
@ -130,10 +126,13 @@ def main():
print(f"duration: {end_time - start_time}")
df = reformat_data(results, SNRs, gammas)
df = misc.pgf_reformat_data_3d(results=results, x_param_name="SNR",
y_param_name="gamma",
z_param_names=["BER", "FER", "DFR",
"num_iterations"])
df.to_csv(
f"sim_results/{sim_name}_{misc.slugify(H_file)}.csv")
# df.sort_values(by=["gamma", "SNR"]).to_csv(
# f"sim_results/{sim_name}_{misc.slugify(H_file)}.csv", index=False)
sns.set_theme()
ax = sns.lineplot(data=df, x="SNR", y="BER", hue="gamma")