Added simulate_2d_BER.py
This commit is contained in:
parent
a32d5cb2c9
commit
05f153916f
@ -1,3 +1,5 @@
|
||||
import typing
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
@ -5,11 +7,12 @@ import matplotlib.pyplot as plt
|
||||
import signal
|
||||
from timeit import default_timer
|
||||
from tqdm import tqdm
|
||||
from dataclasses import dataclass
|
||||
from types import MappingProxyType
|
||||
|
||||
from utility import codes, noise, misc
|
||||
from utility.simulation.simulators import GenericMultithreadedSimulator
|
||||
|
||||
# from cpp_modules.cpp_decoders import ProximalDecoder
|
||||
from cpp_modules.cpp_decoders import ProximalDecoder_204_102 as ProximalDecoder
|
||||
|
||||
|
||||
@ -18,9 +21,18 @@ def count_bit_errors(d: np.array, d_hat: np.array) -> int:
|
||||
|
||||
|
||||
def task_func(params):
|
||||
"""Function called by the GenericMultithreadedSimulator instance.
|
||||
|
||||
Calculate the BER, FER, and DFR for a given SNR and gamma.
|
||||
"""
|
||||
signal.signal(signal.SIGINT, signal.SIG_IGN)
|
||||
|
||||
decoder, max_iterations, SNR, n, k = params
|
||||
decoder = params["decoder"]
|
||||
max_iterations = params["max_iterations"]
|
||||
SNR = params["SNR"]
|
||||
n = params["n"]
|
||||
k = params["k"]
|
||||
|
||||
c = np.zeros(n)
|
||||
x_bpsk = c + 1
|
||||
|
||||
@ -44,14 +56,15 @@ def task_func(params):
|
||||
if k_max == -1:
|
||||
dec_fails += 1
|
||||
|
||||
if total_frame_errors > 500:
|
||||
if total_frame_errors > 100:
|
||||
break
|
||||
|
||||
BER = total_bit_errors / (num_iterations * n)
|
||||
FER = total_frame_errors / num_iterations
|
||||
DFR = dec_fails / (num_iterations + dec_fails)
|
||||
|
||||
return BER, FER, DFR, num_iterations
|
||||
return {"BER": BER, "FER": FER, "DFR": DFR,
|
||||
"num_iterations": num_iterations}
|
||||
|
||||
|
||||
def simulate(H_file, SNRs, max_iterations, omega, K, gammas):
|
||||
@ -65,62 +78,45 @@ def simulate(H_file, SNRs, max_iterations, omega, K, gammas):
|
||||
|
||||
# Define params different for each task
|
||||
|
||||
params = {}
|
||||
task_params = []
|
||||
for i, SNR in enumerate(SNRs):
|
||||
for j, gamma in enumerate(gammas):
|
||||
decoder = ProximalDecoder(H=H.astype('int32'), K=K, omega=omega,
|
||||
gamma=gamma)
|
||||
params[f"{i}_{j}"] = (decoder, max_iterations, SNR, n, k)
|
||||
|
||||
task_params.append(
|
||||
{"decoder": decoder, "max_iterations": max_iterations,
|
||||
"SNR": SNR, "gamma": gamma, "n": n, "k": k})
|
||||
|
||||
# Set up simulation
|
||||
|
||||
sim.task_params = params
|
||||
sim.task_params = task_params
|
||||
sim.task_func = task_func
|
||||
|
||||
sim.start_or_continue()
|
||||
|
||||
return sim.get_current_results()
|
||||
|
||||
|
||||
def reformat_data(results, SNRs, gammas):
|
||||
data = {"BER": np.zeros(3 * 10), "FER": np.zeros(3 * 10),
|
||||
"DFR": np.zeros(3 * 10), "gamma": np.zeros(3 * 10),
|
||||
"SNR": np.zeros(3 * 10), "num_iter": np.zeros(3 * 10)}
|
||||
|
||||
for i, (key, (BER, FER, DFR, num_iter)) in enumerate(results.items()):
|
||||
i_SNR, i_gamma = key.split('_')
|
||||
data["BER"][i] = BER
|
||||
data["FER"][i] = FER
|
||||
data["DFR"][i] = DFR
|
||||
data["num_iter"][i] = num_iter
|
||||
data["SNR"][i] = SNRs[int(i_SNR)]
|
||||
data["gamma"][i] = gammas[int(i_gamma)]
|
||||
|
||||
print(pd.DataFrame(data))
|
||||
return pd.DataFrame(data)
|
||||
return sim.current_results
|
||||
|
||||
|
||||
def main():
|
||||
# Set up simulation params
|
||||
|
||||
sim_name = "BER_FER_DFR"
|
||||
sim_name = "2d_BER_FER_DFR"
|
||||
|
||||
# H_file = "BCH_7_4.alist"
|
||||
# H_file = "BCH_31_11.alist"
|
||||
# H_file = "BCH_31_26.alist"
|
||||
# H_file = "96.3.965.alist"
|
||||
H_file = "204.33.486.alist"
|
||||
# H_file = "204.33.484.alist"
|
||||
# H_file = "204.55.187.alist"
|
||||
# H_file = "408.33.844.alist"
|
||||
# H_file = "BCH_7_4.alist"
|
||||
# H_file = "BCH_31_11.alist"
|
||||
# H_file = "BCH_31_26.alist"
|
||||
SNRs = np.arange(1, 6, 0.5)
|
||||
|
||||
SNRs = np.arange(1, 6, 0.5)
|
||||
max_iterations = 20000
|
||||
# omega = 0.005
|
||||
# K = 60
|
||||
omega = 0.05
|
||||
K = 60
|
||||
gammas = [0.15, 0.01, 0.05]
|
||||
K = 100
|
||||
gammas = np.arange(0.0, 0.17, 0.01)
|
||||
|
||||
# Run simulation
|
||||
|
||||
@ -130,10 +126,13 @@ def main():
|
||||
|
||||
print(f"duration: {end_time - start_time}")
|
||||
|
||||
df = reformat_data(results, SNRs, gammas)
|
||||
df = misc.pgf_reformat_data_3d(results=results, x_param_name="SNR",
|
||||
y_param_name="gamma",
|
||||
z_param_names=["BER", "FER", "DFR",
|
||||
"num_iterations"])
|
||||
|
||||
df.to_csv(
|
||||
f"sim_results/{sim_name}_{misc.slugify(H_file)}.csv")
|
||||
# df.sort_values(by=["gamma", "SNR"]).to_csv(
|
||||
# f"sim_results/{sim_name}_{misc.slugify(H_file)}.csv", index=False)
|
||||
|
||||
sns.set_theme()
|
||||
ax = sns.lineplot(data=df, x="SNR", y="BER", hue="gamma")
|
||||
Loading…
Reference in New Issue
Block a user