Made polytope example figure more understandable
This commit is contained in:
parent
8880423d1e
commit
047e4f4009
@ -270,8 +270,8 @@ Figure \ref{fig:dec:poly:exact} shows the codeword polytope
|
||||
$\text{poly}\left( \mathcal{C} \right) $, i.e. the constraints for the
|
||||
equivalent linear program to exact \ac{ML} decoding - only valid codewords are
|
||||
feasible solutions.
|
||||
Figures \ref{fig:dec:poly:local1} and \ref{fig:dec:poly:local2} show the local
|
||||
codeword polytopes of each check node.
|
||||
Figure \ref{fig:dec:poly:local} shows the local codeword polytope of each check
|
||||
node.
|
||||
Their intersection, the relaxed codeword polytope $\overline{Q}$, is shown in
|
||||
figure \ref{fig:dec:poly:relaxed}.
|
||||
It can be seen that the relaxed codeword polytope $\overline{Q}$ introduces
|
||||
@ -302,35 +302,9 @@ The resulting formulation of the relaxed optimization problem is the following:%
|
||||
% Left side - codeword polytope
|
||||
%
|
||||
|
||||
\begin{subfigure}[c]{0.45\textwidth}
|
||||
\begin{subfigure}[b]{0.49\textwidth}
|
||||
\centering
|
||||
|
||||
\begin{subfigure}{\textwidth}
|
||||
\centering
|
||||
|
||||
\begin{align*}
|
||||
\boldsymbol{H} &=
|
||||
\begin{bmatrix}
|
||||
1 & 1 & 1\\
|
||||
0 & 1 & 1
|
||||
\end{bmatrix}\\[1em]
|
||||
\mathcal{C} &= \left\{
|
||||
\begin{bmatrix}
|
||||
0\\
|
||||
0\\
|
||||
0
|
||||
\end{bmatrix},
|
||||
\begin{bmatrix}
|
||||
0\\
|
||||
1\\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\right\}
|
||||
\end{align*}
|
||||
|
||||
\caption{Definition of the visualized code}
|
||||
\label{fig:dec:poly:code_def}
|
||||
\end{subfigure} \\[7em]
|
||||
\begin{subfigure}{\textwidth}
|
||||
\centering
|
||||
|
||||
@ -338,7 +312,7 @@ The resulting formulation of the relaxed optimization problem is the following:%
|
||||
draw, circle, inner sep=0pt, minimum size=4pt]
|
||||
|
||||
\tdplotsetmaincoords{60}{25}
|
||||
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
|
||||
\begin{tikzpicture}[scale=0.8, transform shape, tdplot_main_coords]
|
||||
% Cube
|
||||
|
||||
\coordinate (p000) at (0, 0, 0);
|
||||
@ -389,17 +363,20 @@ The resulting formulation of the relaxed optimization problem is the following:%
|
||||
% Right side - relaxed polytope
|
||||
%
|
||||
%
|
||||
\begin{subfigure}[c]{0.45\textwidth}
|
||||
\begin{subfigure}[b]{0.49\textwidth}
|
||||
\centering
|
||||
|
||||
\begin{subfigure}{\textwidth}
|
||||
\centering
|
||||
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\centering
|
||||
|
||||
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
|
||||
draw, circle, inner sep=0pt, minimum size=4pt]
|
||||
|
||||
\tdplotsetmaincoords{60}{25}
|
||||
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
|
||||
\begin{tikzpicture}[scale=0.8, transform shape, tdplot_main_coords]
|
||||
% Cube
|
||||
|
||||
\coordinate (p000) at (0, 0, 0);
|
||||
@ -451,19 +428,15 @@ The resulting formulation of the relaxed optimization problem is the following:%
|
||||
\node[color=KITblue, right=0cm of c110] {$\left( 1, 1, 0 \right) $};
|
||||
\node[color=KITblue, above=0cm of c011] {$\left( 0, 1, 1 \right) $};
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Local codeword polytope of check node\\ $j=1$
|
||||
$\left( c_1 + c_2 + c_3 = 0 \right)$}
|
||||
\label{fig:dec:poly:local1}
|
||||
\end{subfigure} \\[1em]
|
||||
\begin{subfigure}{\textwidth}
|
||||
\end{minipage}%
|
||||
\begin{minipage}{0.5\textwidth}
|
||||
\centering
|
||||
|
||||
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
|
||||
draw, circle, inner sep=0pt, minimum size=4pt]
|
||||
|
||||
\tdplotsetmaincoords{60}{25}
|
||||
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
|
||||
\begin{tikzpicture}[scale=0.8, transform shape, tdplot_main_coords]
|
||||
% Cube
|
||||
|
||||
\coordinate (p000) at (0, 0, 0);
|
||||
@ -511,21 +484,41 @@ The resulting formulation of the relaxed optimization problem is the following:%
|
||||
\node[color=KITblue, below=0cm of c100] {$\left( 1, 0, 0 \right) $};
|
||||
\node[color=KITblue, above=0cm of c111] {$\left( 1, 1, 1 \right) $};
|
||||
\end{tikzpicture}
|
||||
\end{minipage}
|
||||
|
||||
\caption{Local codeword polytope of check node\\ $j=2$
|
||||
$\left( c_2 + c_3 = 0\right)$}
|
||||
\label{fig:dec:poly:local2}
|
||||
\begin{tikzpicture}
|
||||
\node[color=KITblue, align=center] at (-2,0)
|
||||
{$j=1$\\ $\left( c_1 + c_2+ c_3 = 0 \right) $};
|
||||
\node[color=KITblue, align=center] at (2,0)
|
||||
{$j=2$\\ $\left(c_2 + c_3 = 0\right)$};
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Local codeword polytopes of the check nodes}
|
||||
\label{fig:dec:poly:local}
|
||||
\end{subfigure}\\[1em]
|
||||
\begin{subfigure}{\textwidth}
|
||||
\centering
|
||||
|
||||
\begin{tikzpicture}
|
||||
\draw (-2, 0) -- (2, 0);
|
||||
\draw (-2, 0.5) -- (-2, 0);
|
||||
\draw (2, 0.5) -- (2, 0);
|
||||
|
||||
\node (intersection) at (0, -0.5) {Intersection};
|
||||
|
||||
\draw (0, 0) -- (intersection);
|
||||
\draw[->] (intersection) -- (0, -1);
|
||||
\end{tikzpicture}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\tikzstyle{codeword} = [color=KITblue, fill=KITblue,
|
||||
draw, circle, inner sep=0pt, minimum size=4pt]
|
||||
\tikzstyle{pseudocodeword} = [color=KITred, fill=KITred,
|
||||
draw, circle, inner sep=0pt, minimum size=4pt]
|
||||
|
||||
\tdplotsetmaincoords{60}{25}
|
||||
\begin{tikzpicture}[scale=1, transform shape, tdplot_main_coords]
|
||||
\begin{tikzpicture}[scale=0.8, transform shape, tdplot_main_coords]
|
||||
% Cube
|
||||
|
||||
\coordinate (p000) at (0, 0, 0);
|
||||
@ -578,7 +571,11 @@ The resulting formulation of the relaxed optimization problem is the following:%
|
||||
\end{subfigure}
|
||||
|
||||
\caption{Visualization of the codeword polytope and the relaxed codeword
|
||||
polytope}
|
||||
polytope for the code defined by the parity check matrix $\boldsymbol{H} =
|
||||
\begin{bmatrix}
|
||||
1 & 1 & 1\\
|
||||
0 & 1 & 1
|
||||
\end{bmatrix}$}
|
||||
\label{fig:dec:poly}
|
||||
\end{figure}%
|
||||
%
|
||||
|
||||
Loading…
Reference in New Issue
Block a user