diff --git a/letter.tex b/letter.tex index 1d1a994..a651373 100644 --- a/letter.tex +++ b/letter.tex @@ -89,19 +89,16 @@ \begin{document} -\title{List-based Proximal Decoding for Linear Block Codes} +\title{List-based Optimization of Proximal Decoding for Linear Block Codes} -\author{Andreas Tsouchlos, Holger Jäkel, and Laurent Schmalen\\ -Communications Engineering Lab (CEL), Karlsruhe Institute of Technology (KIT)\\ -Hertzstr. 16, 76187 Karlsruhe, Germany, Email: \texttt{\{first.last\}@kit.edu}} +\author{Andreas Tsouchlos, Holger Jäkel, and Laurent Schmalen +\thanks{The authors are with the Communications Engineering Lab (CEL), Karlsruhe Institute of Technology (KIT), corresponding author: \texttt{holger.jaekel@kit.edu}}} -% TODO -\markboth{Journal of \LaTeX\ Class Files,~Vol.~14, No.~8, August~2021}% -{Shell \MakeLowercase{\textit{et al.}}: A Sample Article Using IEEEtran.cls - for IEEE Journals} +\markboth{IEEE Communications Letters}{List-based Optimization of Proximal Decoding for Linear Block Codes} \maketitle + % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Abstract & Index Terms @@ -331,7 +328,7 @@ presented in Algorithm \ref{alg:proximal_decoding}. \STATE \textbf{for} $K$ iterations \textbf{do} \STATE \hspace{5mm} $\boldsymbol{r} \leftarrow \boldsymbol{s} - \omega \left( \boldsymbol{s} - \boldsymbol{y} \right) $ \STATE \hspace{5mm} $\boldsymbol{s} \leftarrow \Pi_\eta \left(\boldsymbol{r} - \gamma \nabla h\left( \boldsymbol{r} \right) \right)$ - \STATE \hspace{5mm} $\boldsymbol{\hat{c}} \leftarrow \mathbbm{1}_{\left\{ \boldsymbol{s} \preceq 0 \right\}}$ + \STATE \hspace{5mm} $\boldsymbol{\hat{c}} \leftarrow \mathbbm{1}_{\left\{ \boldsymbol{s} \le 0 \right\}}$ \STATE \hspace{5mm} \textbf{if} $\boldsymbol{H}\boldsymbol{\hat{c}} = \boldsymbol{0}$ \textbf{do} \STATE \hspace{10mm} \textbf{return} $\boldsymbol{\hat{c}}$ \STATE \hspace{5mm} \textbf{end if} @@ -631,7 +628,7 @@ the probability that a given component was decoded incorrectly.% ylabel=$P(\hat{c}_{i'} \ne c_{i'})$, xlabel=$i'$, ymode=log, - ymin=1e-9,ymax=1e-5, + ymin=8e-9,ymax=1e-5, xmin=0,xmax=200, width=0.95\figwidth, height=\figheight, @@ -709,7 +706,14 @@ algorithm presented here when applied to a $\left( 3,6 \right)$-regular LDPC code with $n=204$ and $k=102$ \cite[204.33.484]{mackay}. The parameters chosen for the simulation are $\gamma = 0.05, \omega=0.05, \eta=1.5, K=200$. -Again, these parameters were chosen,% +Again, these parameters were chosen, +as a preliminary examination +showed that they provide the best results for proximal decoding as well as +the improved algorithm. +All points were generated by simulating at least 100 frame errors. +The number $N$ of possibly wrong components selected was selected as $8$, +since this provides reasonable gain without requiring an unreasonable amount +of memory and computational resources. % \begin{figure} \centering @@ -717,6 +721,15 @@ Again, these parameters were chosen,% \ifoverleaf \includegraphics{figs/letter-figure5.pdf} \else + \newcommand{\lineintext}[1]{% + \begin{tikzpicture} + \draw[#1] (0,0) -- (1.5em,0); + + % Dummy node taking up the space of a letter to fix spacing + \node[outer sep=0, inner sep=0] () at (0.75em,0) {\phantom{a}}; + \end{tikzpicture}% + } + \begin{tikzpicture} \begin{axis}[ grid=both, @@ -726,39 +739,35 @@ Again, these parameters were chosen,% ymax=1, ymin=1e-6, width=\figwidth, height=\figheight, - legend columns=2, - legend style={draw=white!15!black, - legend cell align=left, - at={(0.5,-0.44)},anchor=south} + legend pos=north east, + ylabel={BER (\lineintext{}) / FER (\lineintext{dashed})}, ] - \addplot+[FERPlot, mark=o, mark options={solid}, scol1] + \addplot+[FERPlot, mark=o, mark options={solid}, scol1, forget plot] table [x=SNR, y=FER, col sep=comma, discard if not={gamma}{0.05}, discard if gt={SNR}{9}] {res/proximal_ber_fer_dfr_20433484.csv}; - \addlegendentry{FER, prox. dec.}; \addplot+[BERPlot, mark=*, scol1] table [x=SNR, y=BER, col sep=comma, discard if not={gamma}{0.05}, discard if gt={SNR}{7.5}] {res/proximal_ber_fer_dfr_20433484.csv}; - \addlegendentry{BER, prox. dec.}; + \addlegendentry{Prox. dec.}; - \addplot+[FERPlot, mark=triangle, mark options={solid}, scol2] + \addplot+[FERPlot, mark=triangle, mark options={solid}, scol2, forget plot] table [x=SNR, y=FER, col sep=comma, discard if not={gamma}{0.05}, discard if gt={SNR}{7.5}] {res/improved_ber_fer_dfr_20433484.csv}; - \addlegendentry{FER, improved}; \addplot+[BERPlot, mark=triangle*, scol2] table [x=SNR, y=BER, col sep=comma, discard if not={gamma}{0.05}, discard if gt={SNR}{6.5}] {res/improved_ber_fer_dfr_20433484.csv}; - \addlegendentry{BER, improved}; + \addlegendentry{Improved}; \end{axis} \end{tikzpicture} \fi @@ -773,13 +782,6 @@ Again, these parameters were chosen,% \label{fig:results} \end{figure}% % -\noindent as a preliminary examination -showed that they provide the best results for proximal decoding as well as -the improved algorithm. -All points were generated by simulating at least 100 frame errors. -The number $N$ of possibly wrong components selected was selected as $8$, -since this provides reasonable gain without requiring an unreasonable amount -of memory and computational resources. A noticeable improvement can be observed both in the FER as well as the BER. The gain varies significantly @@ -824,3 +826,4 @@ Ministry of Education and Research (BMBF) within the project Open6GHub \printbibliography \end{document} +